歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > PDF文檔下載  

離散數(shù)學(xué) 課后習(xí)題答案

  • 資源ID:20571279       資源大小:508.95KB        全文頁(yè)數(shù):41頁(yè)
  • 資源格式: PDF        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶(hù)名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

離散數(shù)學(xué) 課后習(xí)題答案

離散數(shù)學(xué)課后習(xí)題答案 (左孝凌版) 不得不放棄、 1-1,1-2 (1) 解: a) 是命題,真值為T(mén)。 b) 不是命題。 c) 是命題,真值要根據(jù)具體情況確定。 d) 不是命題。 e) 是命題,真值為T(mén)。 f) 是命題,真值為T(mén)。 g) 是命題,真值為F。 h) 不是命題。 i) 不是命題。 (2) 解: 原子命題:我愛(ài)北京天安門(mén)。 復(fù)合命題:如果不是練健美操,我就出外旅游拉。 (3) 解: a) (P R)Q b) QR c) P d) PQ (4) 解: a)設(shè)Q:我將去參加舞會(huì)。R:我有時(shí)間。P:天下雨。 Q (RP):我將去參加舞會(huì)當(dāng)且僅當(dāng)我有時(shí)間和天不下雨。 b)設(shè)R:我在看電視。Q:我在吃蘋(píng)果。 RQ:我在看電視邊吃蘋(píng)果。 c) 設(shè)Q:一個(gè)數(shù)是奇數(shù)。R:一個(gè)數(shù)不能被2除。 (QR)(RQ):一個(gè)數(shù)是奇數(shù),則它不能被2整除并且一個(gè)數(shù)不能被2整除,則它是奇數(shù)。 (5) 解: a) 設(shè)P:王強(qiáng)身體很好。Q:王強(qiáng)成績(jī)很好。PQ b) 設(shè)P:小李看書(shū)。Q:小李聽(tīng)音樂(lè)。PQ c) 設(shè)P:氣候很好。Q:氣候很熱。PQ d) 設(shè)P: a和b是偶數(shù)。Q:a+b是偶數(shù)。PQ e) 設(shè)P:四邊形ABCD是平行四邊形。Q :四邊形ABCD的對(duì)邊平行。P Q f) 設(shè)P:語(yǔ)法錯(cuò)誤。Q:程序錯(cuò)誤。R:停機(jī)。 (P Q) R (6) 解: a) P:天氣炎熱。Q:正在下雨。 PQ b) P:天氣炎熱。R:濕度較低。 PR c) R:天正在下雨。S:濕度很高。 RS d) A:劉英上山。B:李進(jìn)上山。 AB e) M:老王是革新者。N:小李是革新者。 MN f) L:你看電影。M:我看電影。 LM g) P:我不看電視。Q:我不外出。 R:我在睡覺(jué)。 PQR h) P:控制臺(tái)打字機(jī)作輸入設(shè)備。Q:控制臺(tái)打字機(jī)作輸出設(shè)備。PQ 1-3 (1)解: a) 不是合式公式,沒(méi)有規(guī)定運(yùn)算符次序(若規(guī)定運(yùn)算符次序后亦可作為合式公式) b) 是合式公式 c) 不是合式公式(括弧不配對(duì)) d) 不是合式公式( R和S之間缺少聯(lián)結(jié)詞) e) 是合式公式。 (2)解: a) A是合式公式,(AB)是合式公式,(A(AB) 是合式公式。這個(gè)過(guò)程可以簡(jiǎn)記為: A;(AB);(A(AB) 同理可記 b) A;A ;(AB) ;(AB)A) c) A;A ;B;(AB) ;(BA) ;(AB)(BA) d) A;B;(AB) ;(BA) ;(AB)(BA) (3)解: a) (AC)(BC)A)(BC)A)(AC) b) (BA)(AB)。 (4)解: a) 是由 c) 式進(jìn)行代換得到,在c) 中用Q代換P, (PP)代換Q. d) 是由a) 式進(jìn)行代換得到,在a) 中用 P(QP)代換Q. e) 是由b) 式進(jìn)行代換得到,用R代換P, S代換Q, Q代換R, P代換S. (5)解: a) P: 你沒(méi)有給我寫(xiě)信。 R: 信在途中丟失了。 P Q b) P: 張三不去。Q: 李四不去。R: 他就去。 (PQ)R c) P: 我們能劃船。 Q: 我們能跑步。 (PQ) d) P: 你來(lái)了。Q: 他唱歌。R: 你伴奏。 P(Q R) (6)解: P:它占據(jù)空間。 Q:它有質(zhì)量。 R:它不斷變化。 S:它是物質(zhì)。 這個(gè)人起初主張:(PQR) S 后來(lái)主張:(PQ S)(SR) 這個(gè)人開(kāi)頭主張與后來(lái)主張的不同點(diǎn)在于: 后來(lái)認(rèn)為有PQ必同時(shí)有R, 開(kāi)頭時(shí)沒(méi)有這樣的主張。 (7)解: a) P: 上午下雨。 Q:我去看電影。 R:我在家里讀書(shū)。 S:我在家里看報(bào)。(PQ)(P(RS) b) P: 我今天進(jìn)城。Q:天下雨。QP c) P: 你走了。 Q:我留下。QP 1-4 (4)解:a) P Q R QR P(QR) PQ (PQ)R T T T T T F T F T T F F F T T F T F F F T F F F T F F F T F F F T F F F F F F F T T F F F F F F T F F F F F F F 所以,P(QR) (PQ)R b) P Q R QR P(QR) PQ (PQ)R T T T T T F T F T T F F F T T F T F F F T F F F 所以,P(QR) (PQ)R ) ( ) ()( ) 所以,P(QR) (PQ)(PR) ) P Q P Q PQ (PQ) PQ (PQ) T T T F F F F T F T F T F F F F F T F F T T F T T T T T F T F T 所以,(PQ) PQ, (PQ) PQ (5)解:如表,對(duì)問(wèn)好所填的地方,可得公式F 1 F 6 ,可表達(dá)為 P Q R F1 F2 F3 F4 F5 F6 T T T T F T T F F T T F F F T F F F T F T T F F T T F T F F F T F T T F F T T T F F T T F F T F T F F F T F F F T T F T T T F F F F F T F T T T F1:(QP)R F2:(PQR)(PQR) F3:(PQ)(QR) F4:(PQR)(PQR) F5:(PQR)(PQR) F6:(PQR) (6) P Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 F F F T F T F T F T F T F T F T F T F T F F T T F F T T F F T T F F T T T F F F F F T T T T F F F F T T T T T T F F F F F F F F T T T T T T T T 解:由上表可得有關(guān)公式為 1.F 2.(PQ) 3.(QP) 4.P 5.(PQ) 6.Q 7.(P Q) 8.(PQ) 9.PQ 10.PQ 11.Q 12.PQ 13.P 14.QP 15.PQ 16.T (7) 證明: a) A(BA) A(BA) A(AB) A(AB) A(AB) b) (A B) (AB)(AB) (AB)(AB) (AB)(AB) 或 (A B) (AB)(BA) (AB)(BA) (AB)(AA)(BB)(BA) (AB)(BA) (AB)(AB) (AB)(AB) c) (AB) (AB) AB d) (A B)(AB)(BA) (AB)(BA) (AB)(AB) e) (ABC)D)(C(ABD) (ABC)D)(C(ABD) (ABC)D)(ABC)D) (ABC)(ABC)D (ABC)(ABC)D (AB)(AB)C)D (C(A B)D) f) A(BC) A(BC) (AB)C (AB)C (AB)C g) (AD)(BD) (AD)(BD) (AB)D (AB)D (AB)D h) (AB)C)(B(DC) (AB)C)(B(DC) (AB)(BD)C (AB) (DB)C (AB)(DB)C (AD)B)C (B(DA)C (8)解: a) (AB) (BA)C (AB) (BA)C (AB) (AB)C TC C b) A(A(BB) (AA)(BB) TF T c) (ABC)(ABC) (AA) (BC) T(BC) BC (9)解:1) 設(shè)C為T(mén),A為T(mén),B為F,則滿(mǎn)足AC BC,但A B不成立。 2)設(shè)C為F,A為T(mén),B為F,則滿(mǎn)足AC BC,但A B不成立。 3)由題意知A和B的真值相同,所 以A和B 的真值也相同。 習(xí)題 1-5 (1) 證明: a) (P(PQ)Q (P(PQ)Q (PP)(PQ)Q (PQ)Q (PQ)Q PQQ PT T b) P(PQ) P(PQ) (PP)Q TQ T c) (PQ)(QR)(PR) 因?yàn)?PQ)(QR) (PR) 所以 (PQ)(QR)為重言式。 d) (ab)(bc) (ca) (ab)(bc)(ca) 因?yàn)?ab)(bc)(ca) (ac)b)(ca) (ac)(ca)(b(ca) (ac)(bc)(ba) 所以(ab)(bc) (ca) (ab)(bc)(ca) 為重言式。 (2) 證明: a)(PQ) P(PQ) 解法1: 設(shè)PQ為T(mén) (1)若P為T(mén),則Q為T(mén),所以PQ為T(mén),故P(PQ)為T(mén) (2)若P為F,則Q為F,所以PQ為F,P(PQ)為T(mén) 命題得證 解法2: 設(shè)P(PQ)為F , 則P為T(mén),(PQ)為F ,故必 有P為T(mén),Q為F ,所以PQ為F。 解法3: (PQ) (P(PQ) (PQ)(P(PQ) (PQ)(PP)(PQ) T 所以(PQ) P(PQ) b)(PQ)Q PQ 設(shè)PQ為F,則P為F,且Q為F, 故PQ為T(mén),(PQ)Q為F, 所以(PQ)Q PQ。 c)(Q(PP)(R(R(PP) RQ 設(shè)RQ為F,則R為T(mén),且Q為F,又PP為F 所以Q(PP)為T(mén),R(PP)為F 所以R(R(PP)為F,所以(Q(PP)(R(R(PP)為F 即(Q(PP)(R(R(PP) RQ成立。 ( 3) 解: a) PQ表示命題“如果8是偶數(shù),那么糖果是甜的” 。 b) a)的逆換式QP表示命題“如果糖果是甜的,那么8是偶數(shù)” 。 c) a)的反換式PQ表示命題“如果8不是偶數(shù),那么糖果不是甜的” 。 d) a)的逆反式QP表示命題“如果糖果不是甜的,那么8不是偶數(shù)” 。 ( 4) 解: a) 如果天下雨,我不去。 設(shè)P:天下雨。Q:我不去。PQ 逆換式QP表示命題:如果我不去,則天下雨。 逆反式QP表示命題:如果我去,則天不下雨 b) 僅當(dāng)你走我將留下。 設(shè)S:你走了。R:我將留下。RS 逆換式SR表示命題:如果你走了則我將留下。 逆反式SR表示命題:如果你不走,則我不留下。 c) 如果我不能獲得更多幫助,我不能完成個(gè)任務(wù)。 設(shè)E:我不能獲得更多幫助。H:我不能完成這個(gè)任務(wù)。EH 逆換式HE表示命題:我不能完成這個(gè)任務(wù),則我不能獲得更多幫助。 逆反式HE表示命題:我完成這個(gè)任務(wù),則我能獲得更多幫助 ( 5) 試證明 PQ, Q邏輯蘊(yùn)含 P。 證明:解法 1: 本題要求證明 (PQ) QP, 設(shè) (PQ) Q為 T,則 (PQ)為 T, Q為 T,故由 的定義,必有 P為 T。 所以 (PQ) QP 解法 2: 由體題可知,即證 (P Q) Q)P 是永真式。 (P Q) Q)P (P Q) (P Q) Q)P (P Q) (P Q) Q) P (P Q) (P Q) Q) P (Q P Q) (Q P Q) P (Q P) T) P Q P P Q T T ( 6) 解: P:我學(xué)習(xí) Q:我數(shù)學(xué)不及格 R:我熱衷于玩撲克。 如果我學(xué)習(xí),那么我數(shù)學(xué)不會(huì)不及格: PQ 如果我不熱衷于玩撲克,那么我將學(xué)習(xí): RP 但我數(shù)學(xué)不及格: Q 因此我熱衷于玩撲克。 R 即本題符號(hào)化為:(PQ)(RP)Q R 證: 證法1:(PQ)(RP)Q)R (PQ)(RP)Q) R (PQ)(RP)QR (QP)(QQ)(RR)(RP) QPRP T 所以,論證有效。 證法2:設(shè)(PQ)(RP)Q為T(mén), 則因Q為T(mén),(PQ) 為T(mén),可 得P為F, 由(RP)為T(mén),得 到R為T(mén)。 故本題論證有效。 ( 7) 解: P:6是偶數(shù) Q:7被2除盡 R:5是素?cái)?shù) 如果6是偶數(shù), 則7被2 除不盡 PQ 或5不是素?cái)?shù), 或7被2除盡 RQ 5是素?cái)?shù) R 所以6是奇數(shù) P 即本題符號(hào)化為: (PQ)(RQ)R P 證: 證法1:(PQ)(RQ)R)P (PQ) (RQ) R) P (PQ) (RQ) R) P (PP) (PQ) (RR) (RQ) (PQ) (RQ) T 所以,論證有效,但實(shí)際上他不符合實(shí)際意義。 證法2:(PQ)(RQ)R為T(mén), 則有R為T(mén),且RQ 為T(mén), 故Q為T(mén), 再由PQ為T(mén),得到P為T(mén)。 ( 8) 證明: a) P(PQ) 設(shè)P為T(mén),則P為F,故PQ為T(mén) b) ABC C 假定ABC為T(mén), 則C為T(mén)。 c) CABB 因?yàn)锳BB為永真,所以C ABB成立。 d) (AB) AB 設(shè)(AB)為T(mén),則AB為F。 若A為T(mén),B為F,則A為F,B為T(mén),故AB為T(mén)。 若A為F,B為T(mén),則A為T(mén),B為F,故AB為T(mén)。 若A為F,B為F,則A為T(mén),B為T(mén),故AB為T(mén)。 命題得證。 e) A(BC),DE,(DE)A BC 設(shè)A(BC),DE,(DE)A為T(mén), 則DE為T(mén),(DE)A為T(mén),所以A為T(mén) 又A(BC)為T(mén),所以BC為T(mén)。命題得證。 f) (AB)C,D,CD AB 設(shè)(AB)C,D,CD為T(mén),則D為T(mén),CD為T(mén),所 以C為F 又(AB)C為T(mén),所以AB為F,所以AB為T(mén)。命題得證。 (9)解: a) 如果他有勇氣,他將得勝。 P:他有勇氣 Q:他將得勝 原命題:PQ 逆反式:QP 表示:如果他失敗了,說(shuō)明他沒(méi)勇氣。 b) 僅當(dāng)他不累他將得勝。 P:他不累 Q:他得勝 原命題:QP 逆反式:PQ 表示:如果他累,他將失敗。 習(xí)題 1-6 (1)解: a) (PQ)P (PP)Q (TQ) b) (P(QR) PQ (P(QR)PQ (PPQ)(QPQ)(RPQ) (PQ)(PQ)(PRQ) PQ (PQ) c) PQ(RP) PQ(RP) (PQR)(PQP) (PQR)F PQR (PQR) (2) 解: a)P PP b)PQ (PQ) (PQ)(PQ) c)PQ PQ (PP)(QQ) (3)解: P(PQ) P(PQ) T PP (PP)(PP) P(PP) P(PQ) P(PQ) T PP (PP) (PP)P) (PP)P)(PP)P) (4)解: PQ (PQ) (PP)(QQ) (PP)(QQ)(PP)(QQ) (5)證明: (BC) (BC) BC (BC) (BC) BC (6)解:聯(lián)結(jié)詞“”和“”不滿(mǎn)足結(jié)合律。舉例如下: a)給出一組指派:P為T(mén),Q為F,R為F,則(PQ)R為T(mén),P(QR)為F 故 (PQ)R P(QR). b)給出一組指派:P為T(mén),Q為F,R為F,則(PQ) R為T(mén),P(QR)為F 故(PQ)R P(QR). (7)證明: 設(shè)變?cè)狿,Q,用連結(jié)詞 ,作用于P,Q得到:P,Q,P,Q,P Q,P P,Q Q,Q P。 但P QQP,P PQQ,故實(shí)際有: P,Q,P,Q,P Q,P P(T) (A) 用作用于(A)類(lèi),得到擴(kuò)大的公式類(lèi)(包括原公式類(lèi)) : P,Q,P,Q,(P Q) , T,F(xiàn), P Q (B) 用 作用于(A)類(lèi),得到: PQ,P P F,P Q (P Q) ,P (P Q) Q,P (P P) P, QP (P Q) ,Q Q F,Q (P Q) P,Q TQ, P Q PQ,P (P Q) Q,P TP, Q (P Q) P,Q TQ, (P Q) (P Q) PQ. 因此, (A)類(lèi)使用運(yùn)算后,仍在(B)類(lèi)中。 對(duì)(B)類(lèi)使用運(yùn)算得: P,Q,P,Q, P Q, F,T, (P Q) , 仍在(B)類(lèi)中。 對(duì)(B)類(lèi)使用 運(yùn)算得: PQ,P P F,P Q (P Q) ,P (P Q) Q,P TP,P FP,P (P Q) Q, QP (P Q) ,Q Q F,Q (P Q) P,Q TQ, QFQ, Q (P Q) P, P Q PQ,P (P Q) Q,P TP, P FP,P (P Q) Q, Q (P Q) P,Q TQ, Q TQ,Q (P Q) P, (P Q) T(P Q) ,(P Q) FPQ,(P Q) (P Q) F TFF,T (P Q) PQ F(P Q) (P Q) (P Q) (P Q) PQ. 故由(B)類(lèi)使用 運(yùn)算后,結(jié)果仍在(B)中。 由上證明:用 ,兩個(gè)連結(jié)詞,反復(fù)作用在兩個(gè)變?cè)墓街校Y(jié)果只能產(chǎn)生(B)類(lèi)中的公式,總 共僅八個(gè)不同的公式,故 ,不是功能完備的,更不能是最小聯(lián)結(jié)詞組。 已證 ,不是最小聯(lián)結(jié)詞組,又因?yàn)?P Q (P Q) ,故任何命題公式中的聯(lián)結(jié)詞,如僅 用 , 表達(dá),則必可用 ,表達(dá),其逆亦真。故 , 也必不是最小聯(lián)結(jié)詞組。 (8)證明,和不是最小聯(lián)結(jié)詞組。 證明:若,和是最小聯(lián)結(jié)詞,則 P (PP) P (PP) P P(P(P) 對(duì)所有命題變?cè)概蒚,則等價(jià)式左邊為F,右邊為T(mén),與等價(jià)表達(dá)式矛盾。 所以,和不是最小聯(lián)結(jié)詞。 (9)證明,和, 是最小聯(lián)結(jié)詞組。 證明:因?yàn)?為最小聯(lián)結(jié)詞組,且PQ PQ 所以,是功能完備的聯(lián)結(jié)詞組,又,都不是功能完備的聯(lián)結(jié)詞組。 所以,是最小聯(lián)結(jié)詞組。 又因?yàn)镻Q (P Q),所以, 是功能完備的聯(lián)結(jié)詞組,又, 不是功能完備的聯(lián)結(jié) 詞組, 所以, 是最小聯(lián)結(jié)詞組。 習(xí)題 1-7 (1) 解: P(PQ) P(PQ) (PP)(PQ) P(PQ) (P(QQ)(PQ) (PQ)(PQ)(PQ) (2) 解: a) (PQ)R (PQ)R PQR (PQ)(PQ) (QR)(QR)(RP)(RP) b) P(QR)S) P(QR)S) PQRS (PQ)(PQ) (QR)(QR)(RS)(RS)(SP)(S P) c) (PQ)(ST) (PQ)(ST) (PQS)(PQT) d) (PQ)R (PQ)R (PQ)R (PR)(QR) e) (PQ)(PQ) (PQ)(PQ) (PP)(PQ)(QP)(QQ) (PQ)(QP) (3) 解: a) P(PQR) (PP)(PQ)(PR) c c c c c (PQ)(PR) b) (PQ)(PQ) (PQ)(PQ) (PQ)(PQ) (PPQ)(QPQ) c) (PQ) (PQ) PQ (PQ)(PQ)(QP) d) (PQ)R (PQ)R (PQ)R (PR)(QR) e) (PQ)(PQ) (PP)(PQ)(QP)(QQ) (PQ)(QP) (4) 解: a) (PQ)(P Q) (PQ) (P Q) (PQ) (PQ)(PQ) 1,2,3 PQ= 0 b) Q(PQ) (PQ)(QQ) PQ = 3 0,1,2 (PQ)(PQ) (PQ) c) P(P(Q(QR) P(P(Q(QR) PQR= 0 1,2,3,4,5,6,7 =(PQR) (PQR) (PQR) (PQR) (PQR) (PQR) (PQR) d) (P(QR) )(P(QR) (P(QR) (P(QR) (PP) (P(QR) (QR) P) (QR) (QR) (PQR) (PQR) = 0,7 1,2,3,4,5,6 (PQR) (PQR) (PQR) (PQR) (PQR) (PQR) e) P(P(QP) P(P(QP) (PP)(PQP) T(TQ) T 0,1,2,3 = (PQ) (PQ) (PQ) (PQ) f) (QP) (PQ) (QP) PQ (QP) (PQ) F 0,1,2,3 = (PQ) (PQ) (PQ) (PQ) (5) 證明: a) (AB) (AC) (AB) (AC) A(BC) A(BC) (AB) (AC) b) (AB) (AB) (AB) (AB) (AB) (AB) A(BB) AT A (AB) (BA) (AB) (BA) A(BB) AF A c) AB(AB) (AA)(AB)B ABB F AB(AB) (AA)(AB)B ABB F d) A(A(AB) AA(AB) T AB(AB) (AB) (AB) T (6)解:A R(Q(RP),則A* R(Q(RP) AR(Q(RP) (R(Q(RP) RQ(RP) (RQ) (RP) A*R(Q(RP) (R(Q(RP) RQ(RP) (RQ) (RP) (7) 解:設(shè)A:A去出差。B:B去出差。C:C去出差。D:D去出差。 若A去則C和D 中要去一個(gè)。 A(C VD) B和C不能都去。 (BC) C去則D要留下。 CD 按題意應(yīng)有:A(C VD),(BC),CD必須同時(shí)成立。 因?yàn)镃 VD (CD) (DC) 故(A(C VD)(BC) (CD) (A(CD) (DC) (BC) (CD) (A(CD) (DC) (BC) (CD) (A( CD ) ( DC ) (BC) (BD) (CD) C) (A BC ) (A BD ) (A CD ) (A C ) ( BC D) (CDBD) (CD CD ) (CD C ) (DC BC ) (DC BD ) (DC CD ) (DC C ) 在上述的析取范式中,有些(畫(huà)線(xiàn)的)不符合題意,舍棄,得 (AC) (BCD) (CD)(DCB) 故分派的方法為:BD ,或 DA,或 CA。 (8) 解:設(shè) P:A 是第一。Q:B 是第二。R:C 是第二。S:D 是第四。E:A 是第二。 由題意得 (P VQ) (R VS) (E VS) (PQ) (PQ) (RS) (RS) (ES) (ES) (PQRS) (PQRS) (PQRS) (PQRS)(ES)(ES) 因?yàn)?(PQRS)與(PQRS)不合題意,所以原式可化為 (PQRS) (PQRS)(ES) (ES) (PQRSES) (PQRSES) (PQRSES)(PQRSES) (PQRSE) (PQRSE) 因R與E 矛盾,故PQRSE為真, 即A不是第一,B是第二,C不是第二,D為第四,A不是第二。 于是得: A是第三 B是第二 C是第一 D是第四。 習(xí)題 1-8 (1)證明: a)(PQ),QR,R P (1) R P (2) QR P (3) Q (1)(2)T,I (4) (PQ) P (5) PQ (4)T,E (6) P (3)(5)T,I b)J(MN),(HG)J,HG MN (1) (HG) J P (2) (HG) P (3) J (1)(2)T,I (4) J(MN) P (5) MN (3)(4)T,I c)BC,(B C)(HG) GH (1) BC P (2) B (1)T,I (3) C (1)T,I (4) BC (2)T,I (5) CB (3)T,I (6) CB (4)T,E (7) BC (5)T,E (8) BC (6)(7)T,E (9) (BC) (HG) P (10) HG (8)(9)T,I d)PQ,(QR)R,(PS) S (1) (QR) R (2) QR (1)T,I (3) R (1)T,I (4) Q (2)(3)T,I (5) PQ P (6) P (4)(5)T,I (7) (PS) P (8) PS (7)T,E (9) S (6)(8)T,I (2) 證明: a)AB,CB AC (1) (A C) P (2) A (1)T,I (3) C (1)T,I (4) AB P (5) B (2)(4)T,I (6) CB P (7) B (3)(6)T,I (8) BB 矛盾。(5),(7) b)A(BC),(CD)E,F(xiàn)(DE) A(BF) (1) (A(BF) P (2) A (1)T,I (3) (BF) (1)T,I (4) B (3)T,I (5) F (3)T, (6) A(BC) P (7) BC (2)(6)T,I (8) C (4)(7)T,I (9) F(DE) P (10) DE (5)(9)T,I (11) D (10)T,I (12) CD (8)(11)T,I (13) (CD) E P (14) E (12)(13)T,I (15) E (10)T,I (16) EE 矛盾。(14),(15) c)ABCD,DEF AF (1) (AF) P (2) A (1)T,I (3) F (1)T,I (4) AB (2)T,I (5) (AB) CD P (6) CD (4)(5)T,I (7) C (6)T,I (8) D (6)T,I (9) DE (8)T,I (10) DEF P (11) F (9)(10)T,I (12) FF 矛盾。(3),(11) d)A(BC),BD,(EF)D,B(AE) BE (1) (BE) P (2) B (1)T,I (3) E (1)T,I (4) BD P (5) D (2)(4)T,I (6) (EF) D P (7) (EF) (5)(6)T,I (8) E (7)T,I (9) EE 矛盾 e)(AB)(CD),(BE)(DF),(EF),AC A (1) (AB) (CD) P (2) AB (1)T,I (3) (BE) (DF) P (4) BE (3)T,I (5) AE (2)(4)T,I (6) (EF) P (7) EF (6)T,E (8) EF (7)T,E (9) AF (5)(8)T,I (10) CD (1)T,I (11) DF (3)T,I (12) CF (10)(10)T,I (13) AC P (14) AF (13)(12)T,I (15) FA (14)T,E (16) AA (9)(15)T,I (17) AA (16)T,E (18) A (17) T,E (3) 證明: a)AB,CB AC (1) A P (2) AB P (3) B (1)(2)T,I (4) CB P (5) C (3)(4)T,I (6) AC CP b)A(BC),(CD)E,F(xiàn)(DE) A(BF) (1) A P (2) A(BC) P (3) BC (1)(2)T,I (4) B P (5) C (3)(4)T,I (6) (CD) E P (7) C(DE) (6)T,E (8) DE (5)(7)T,I (9) DE (8)T,E (10) (DE) (9)T,E (11) F(DE) P (12) F (10)(11)T,I (13) BF CP (14) A(BF) CP c)ABCD,DEF AF (1) A P (2) AB (1)T,I (3) ABCD P (4) CD (2)(3)T,I (5) D (4)T,I (6) DE (5)T,I (7) DEF P (8) F (6)(7)T,I (9) AF CP d)A(BC),BD,(EF)D,B(AE) BE (1) B P(附加前提) (2) BD P (3) D (1)(2)T,I (4) (EF)D P (5) (EF) (3)(4)T,I (6) E (5)T,I (7) BE CP (4)證明: a) RQ,RS,SQ,PQ P (1) RQ P (2) RS P (3) SQ P (4) Q (1)(2)(3)T,I (5) PQ P (6) P (4)(5)T,I b) SQ,SR,R,P QP 證法一: (1) SR P (2) R P (3) S (1)(2)T,I (4) SQ P (5) Q (3)(4)T,I (6) P Q P (7)(PQ)(QP) (6)T,E (8) PQ (7)T,I (9) P (5)(8)T,I 證法二: (反證法) (1) P P(附加前提) (2) P Q P (3)(PQ)( QP) (2)T,E (4) PQ (3)T,I (5) Q (1)(4)T,I (6) SQ P (7) S (5)(6)T,I (8) SR P (9) R (7)(8)T,I (10) R P (11) RR 矛盾(9) (10)T,I c)(PQ)(RS),(QP)R),R PQ (1) R P (2) (QP) R P (3) QP (1)(2)T,I (4)(PQ) (RS) P (5) (RS) (PQ) (4)T,E (6) RS (1)T,I (7) PQ (5)(6) (8) (PQ) (QP) (3)(7)T,I (9) PQ (8)T,E (5) 解: a) 設(shè)P:我跑步。Q:我很疲勞。 前提為:PQ,Q (1) PQ P (2) Q P (3) P (1)(2)T,I 結(jié)論為:P,我沒(méi)有跑步。 b) 設(shè)S:他犯了錯(cuò)誤。 R:他神色慌張。 前提為:SR,R 因?yàn)椋⊿R)R (SR)R R。故本題沒(méi)有確定的結(jié)論。 實(shí)際上,若S R為真,R為真,則S可為真,S也可為假,故無(wú)有效結(jié)論。 c) 設(shè)P:我的程序通過(guò)。 Q:我很快樂(lè)。 R:陽(yáng)光很好。 S:天很暖和。 (把晚上十一點(diǎn)理解為陽(yáng)光不好) 前提為:PQ,QR,RS (1) PQ P (2) QR P (3) PR (1)(2)T,I (4) RS P (5) R (4)T,I (6) P (3)(5)T,I 結(jié)論為: P,我的程序沒(méi)有通過(guò) 習(xí)題 2-1,2-2 (1) 解: a) 設(shè)W(x) :x是工人。c:小張。 則有 W(c) b) 設(shè)S(x) :x是田徑運(yùn)動(dòng)員。B(x) :x是球類(lèi)運(yùn)動(dòng)員。h:他 則有 S(h) B(h) c) 設(shè)C(x) :x是聰明的。B(x) :x是美麗的。l:小莉。 則有 C(l) B(l) d)設(shè)O(x) :x是奇數(shù)。 則有 O(m) O(2m) 。 e)設(shè)R(x) :x是實(shí)數(shù)。Q(x) :x是有理數(shù)。 則有 ( x) (Q(x) R(x) ) f) 設(shè)R(x) :x是實(shí)數(shù)。Q(x) :x是有理數(shù)。 則有 ( x) (R(x) Q(x) ) g) 設(shè)R(x) :x是實(shí)數(shù)。Q(x) :x是有理數(shù)。 則有 ( x) (R(x) Q(x) ) h)設(shè)P(x,y) :直線(xiàn)x平行于直線(xiàn)y G(x,y) :直線(xiàn)x相交于直線(xiàn)y。 則有 P(A,B) G(A,B) (2) 解: a) 設(shè)J(x):x是教練員。L(x):x是運(yùn)動(dòng)員。 則有 ( x) (J(x) L(x) ) b) 設(shè)S(x):x是大學(xué)生。L(x):x是運(yùn)動(dòng)員。 則有 ( x) (L(x) S(x) ) c) 設(shè)J(x):x是教練員。O(x):x是年老的。V(x) :x是健壯的。 則有 ( x) (J(x) O(x) V(x) ) d) 設(shè)O(x):x是年老的。V(x) :x是健壯的。j:金教練 則有 O(j) V(j) e) 設(shè)L(x):x是運(yùn)動(dòng)員。J(x):x是教練員。 則 ( x) (L(x) J(x) ) 本題亦可理解為:某些運(yùn)動(dòng)員不是教練。 故 ( x) (L(x) J(x) ) f) 設(shè)S(x) :x是大學(xué)生。L(x) :x是運(yùn)動(dòng)員。C(x) :x是國(guó)家選手。 則有 ( x) (S(x) L(x) C(x) ) g) 設(shè)C(x) :x是國(guó)家選手。V(x) :x是健壯的。 則有 ( x) (C(x) V(x) )或 ( x) (C(x) V(x) ) h) 設(shè)C(x) :x是國(guó)家選手。O(x) :x是老的。L(x) :x 是運(yùn)動(dòng)員。 則有 ( x) (O(x) C(x) L(x) ) i) 設(shè)W(x) :x是女同志。H(x) :x是家庭婦女。C(x) :x是國(guó)家選手。 則有 ( x) (W(x) C(x) H(x) ) j)W(x) :x是女同志。J(x) :x是教練。C(x) :x是國(guó)家選手。 則有( x) (W(x) J(x) C(x) ) k)L(x) :x 是運(yùn)動(dòng)員。J(y) :y是教練。A(x,y):x欽佩y。 則有 ( x) (L(x) ( y) (J(y) A(x,y) ) ) l)設(shè)S(x) :x是大學(xué)生。L(x) :x 是運(yùn)動(dòng)員。A(x,y):x欽佩y。 則( x) (S(x) ( y) (L(y) A(x,y)) ) 習(xí)題 2-3 ( 1)解: a) 5是質(zhì)數(shù)。 b) 2是偶數(shù)且 2是質(zhì)數(shù)。 c)對(duì)所有的 x,若 x能被 2除盡,則 x是偶數(shù)。 d)存在 x, x是偶數(shù),且 x能除盡 6。 (即某些偶數(shù)能除盡 6) e)對(duì)所有的 x,若 x不是偶數(shù),則 x不能被 2除盡。 f)對(duì)所有的 x,若 x是偶數(shù),則對(duì)所有的 y,若 x能除盡 y,則 y也是偶數(shù)。 g)對(duì)所有的 x,若 x 是質(zhì)數(shù),則存在 y, y 是偶數(shù)且 x 能除盡 y(即所有質(zhì)數(shù)能除 盡某些偶數(shù)) 。 h)對(duì)所有的 x,若 x 是奇數(shù),則對(duì)所有 y, y 是質(zhì)數(shù),則 x 不能除盡 y(即任何奇 數(shù)不能除盡任何質(zhì)數(shù)) 。 ( 2)解: ( x) (y)(P(x) P(y) E(x,y) (!z)(L(z) R(x,y,z) 或 ( x) (y)(P(x) P(y) E(x,y) (z)(L(z) R(x,y,z) (u)( E(z,u) L(u) R(x,y,u) ( 3)解: a) 設(shè) N(x):x是有限個(gè)數(shù)的乘積。 z(y):y為 0。 P(x):x的乘積為零。 F(y):y是乘積中的一個(gè)因子。 則有 (x)(N(x) P(x) (y)(F(y) z(y) b) 設(shè) R(x):x是實(shí)數(shù)。 Q(x,y):y大于 x。 故 (x)(R(x) (y)(Q(x,y) R(y) c) R(x):x是實(shí)數(shù)。 G(x,y):x大于 y。 則 (x)(y)(z)(R(x) R(y) R(z) G(x+y,xz) ( 4)解:設(shè) G(x,y):x大于 y。則有 (x)(y)(z)(G(y,x) G(0,z) G(xz,yz) ( 5)解:設(shè) N(x):x是一個(gè)數(shù)。 S(x,y):y是 x的后繼數(shù)。 E(x,y): x=y.則 a) (x)(N(x) (!y)(N(y) S(x,y) 或 (x)(N(x) (y)(N(y) S(x,y) (z)( E(y,z) N(z) S(x,z) b) (x)(N(x) S(x,1) c) (x)(N(x) S(x,2) (!y)(N(y) S(y,x) 或 (x)(N(x) S(x,2) (y)(N(y) S(y,x) (z)( E(y,z) N(z) S(z,x) ( 6)解:設(shè) S(x):x是大學(xué)生。 E(x):x是戴眼睛的。 F(x):x是用功的。 R(x,y):x在看 y。 G(y):y是大的。 K(y):y是厚的。 J(y):y是巨著。 a:這本。 b:那位。 則有 E(b) F(b) S(b) R(b,a) G(a) K(a) J(a) ( 7)解:設(shè) P(x,y):x在 y連續(xù)。 Q(x,y):xy。則 P(f,a)()()(x)(Q(,0) (Q(,0) Q(,|x-a|) Q(,|f(x)-f(a)|) 習(xí)題 2-4 (1) 解: a) x是約束變?cè)?y是自由變?cè)?b) x是約束變?cè)?P(x) Q(x)中的 x受全稱(chēng)量詞 的約束, S(x)中的 x受存在量詞 的 約束。 c) x, y都是約束變?cè)?,P(x)中的 x受 的約束, R(x)中的 x受 的約束。 d) x, y是約束變?cè)?z是自由變?cè)?(2) 解: a) P(a) P(b) P(c) b) R(a) R(b) R(c) S(a) S(b) S(c) c) (P(a)Q(a) (P(b)Q(b) (P(c)Q(c) d) (P(a) P(b) P(c) (P( z) P(b) P(c) e) (R(a) R(b) R(c) (S(a) S(b) S(c) (3) 解: a) ( x)(P(x) Q(x) (P(1) Q(1) (P(2) Q(2), 但 P(1)為 T, Q(1)為 F, P(2)為 F, Q(2)為 T,所以 ( x)(P(x) Q(x) (T F) (F T)T。 b) ( x)(PQ(x) R(a) (PQ( 2) (PQ(3) (PQ(6) R(a) 因?yàn)?P 為 T, Q(2)為 T, Q(3)為 T, Q(6)為 F, R(5)為 F,所以 ( x)(PQ(x) R(a) (TT )(TT )(TF ) F F (4) 解: a) (u)(v)(P(u, z)Q(v) S(x, y) b) ( u)(P(u) (R(u) Q(u) ( v)R(v)( z)S(x,z) (5) 解: a) (y)A(u, y)( x)B(x, v) (x)(z)C(x, t, z) b) (y)P(u, y) (z)Q(u, z) (x)R(x, t) 習(xí)題 2-5 ( 1)解: a) P(a, f(a) P(b,f(b) P(1,f(1) P(2,f(2) P(1,2) P(2,1) TFF b) (x)(y)P(y,x) (x) (P(1,x) P(2,x) (P(1,1) P(2,1) (P(1,2) P(2,2) (T F) (T F) T c) (x)( y)(P(x,y) P(f(x),f(y) ( x) (P(x,1)P(f(x),f(1) (P(x,2) P(f(x)f(2) (P(1,1)P(f(1),f(1 ) (P(1,2)P(f(1),f(2) (P(2,1)P(f(2),f(1) (P (2,2) P(f(2),f(2) (P(1,1)P(2,2) (P(1,2)P(2,1) (P(2,1)P(1,2) (P(2,2)P(1,1) (TF (TF) (FT) (FT) FFTTF ( 2)解: a) (x)(P(x) Q(f(x),a) (P(1)Q(f(1),1) (P(2)Q(f(2),1) (FQ(2,1) (TQ(1,1) (FF) (TT)T b) (x)(P(f(x) Q(x,f(a) (P(f(1) Q(1,f(1) (P(f(2) Q(2,f(1) (T T) (F F)T c) (x)(P(x) Q(x,a) (P(1) Q(1,a) (P(2) Q(2,a) (P(1) Q(1,1) (P(2) Q(2,1) (F T) (T F)F d) (x)( y)(P(x) Q(x,y) ( x) (P(x) (y)Q(x,y) ( x) (P(x) (Q(x,1) Q(x,2) (P(1) (Q(1,1) Q(1,2) (P(2) (Q(2,1) Q(2,2) (F (T T) (T (F F)F (3) 舉例說(shuō)明下列各蘊(yùn)含式。 a) (x)(P(x) Q(a) (x)P(x)Q(a) b) (x) ( P(x) Q(x), (x) Q(x)P(a) c) (x) (P(x) Q(x), (x) (Q(x) R(x) (x) (P(x) R(x) d) (x) (P(x) Q(x), (x) P(x) (x)Q (x) e) (x) (P(x) Q(x), (x) P(x) (x)Q (x) 解: a)因?yàn)?(x)(P(x) Q(a) (x)P(x) Q(a) 故原式為 (x)P(x) Q(a) (x)P(x)Q(a) 設(shè) P( x) : x是大學(xué)生。 Q( x) : x是運(yùn)動(dòng)員 前提 或者不存在 x, x是大學(xué)生,或者 a是運(yùn)動(dòng)員 結(jié)論 如果存在 x是大學(xué)生,則必有 a是運(yùn)動(dòng)員。 b)設(shè) P( x) : x是研究生。 Q( x) : x是大學(xué)生。 a:論域中的某人。 前提:對(duì)論域中所有 x,如果 x不是研究生則 x是大學(xué)生。 對(duì)論域中所有 x, x不是大學(xué)生。 結(jié)論:對(duì)論域中所有 x都是研究生。 故,對(duì)論域中某個(gè) a,必有結(jié)論 a是研究生,即 P( a)成立。 c)設(shè) P( x) : x是研究生。 Q( x) : x曾讀過(guò)大學(xué)。 R( x) : x曾讀過(guò)中學(xué)。 前提 對(duì)所有 x,如果 x是研究生,則 x曾讀過(guò)大學(xué)。 對(duì)所有 x,如果 x曾讀過(guò)大學(xué),則 x曾讀過(guò)中學(xué)。 結(jié)論:對(duì)所有 x,如果 x是研究生,則 x曾讀過(guò)中學(xué)。 d)設(shè) P( x) : x是研究生。 Q( x) : x是運(yùn)動(dòng)員。 前提 對(duì)所有 x,或者 x是研究生,或者 x是運(yùn)動(dòng)員。 對(duì)所有 x, x不是研究生 結(jié)論 必存在 x, x是運(yùn)動(dòng)員。 e)設(shè) P( x) : x是研究生。 Q( x) : x是運(yùn)動(dòng)員。 前提 對(duì)所有 x,或者 x是研究生,或者 x是運(yùn)動(dòng)員。 對(duì)所有 x, x不是研究生 結(jié)論 對(duì)所有 x, x是運(yùn)動(dòng)員。 ( 4)證明: (x)(A(x) B(x) (x) ( A(x) B(x) (x) A(x) (x) B(x) (x)A(x) (x) B(x) (x)A(x)( x) B(x) ( 5) 設(shè)論域 D=a, b, c,求證 (x)A(x) (x)B(x)( x)(A(x) B(x) 證明:因?yàn)檎撚?D=a, b, c,所以 (x)A(x) (x)B(x) (A(a) A(b) A(c) (B(a) B(b) B(c) (A(a) B(a) (A(a) B(b) (A(a) B(c) (A(b) B(a) (A(b) B(b) (A(b) B(c) (A(c) B(a) (A(c) B(b) (A(c) B(c) (A(a) B(a) (A(b) B(b) (A(c) B(c) ( x)(A(x) B(x) 所以 (x)A(x) (x)B(x)( x)(A(x) B(x) ( 6)解:推證不正確,因?yàn)?(x)(A(x) B(x) (x)A(x) (x) B(x) ( 7)求證 (x)( y)(P(x) Q(y) ( x)P(x) (y)Q(y) 證明: (x)( y)(P(x) Q(y) (x)( y)( P(x) Q(y) (x) P(x) ( y)Q(y) (x)P(x) ( y)Q(y) ( x)P(x) (y)Q(y) 習(xí)題 2-6 ( 1)解: a) (x)(P(x) (y)Q(x,y) (x)( P(x) (y)Q(x,y) (x) (y) ( P(x) Q(x,y) b) (x)( (y)P(x,y) (z)Q(z) R(x) (x)(y)P(x,y) (z)Q(z) R(x) (x)(y)P(x,y) ( (z)Q(z) R(x) (x)(y)P(x,y) (z) Q(z) R(x) (x) (y) (z) ( P(x,y) Q(z) R(x) c)(x)( y)(zP(x,y,z) (u)Q(x,u) (v)Q(y,v) (x)( y)( (z)P(x,y,z) (u)Q(x,u) (v)Q(y,v) (x)( y)( (z) P(x,y,z) (u) Q(x,u) (v)Q(y,v) (x)( y)( (z) P(x,y,z) (u) Q(x,u) (v)Q(y,v) (x)( y) (z) (u) (v) ( P(x,y,z) Q(x,u) Q(y,v) ( 2) 解: a) (x)P(x) (x)Q(x) (x)(P(x) Q(x) (x)P(x) (x)Q(x) (x)(P(x) Q(x) (x) (P(x) Q(x) (x)(P(x) Q(x) T b) (x)(P(x) (y)(z)Q(x,y) (z)R(y,x) (x)( P(x) (y)( Q(x,y) R(y,x) (x) (y) ( P(x) Q(x,y) R(y,x) 前束合取范式 (x) (y)( (P(x) Q(x,y) R(y,x) (P(x) Q(x,y) R(y,x) (P(x) Q(x,y) R(y,x) ( P(x) Q(x,y) R(y,x) ( P(x) Q(x,y) R(y,x) ( (P(x) Q(x,y) R(y,x) ( P(x) Q(x,y) R(y,x) 前束析取范式 c) (x)P(x) (x)(z)Q(x,z) (z)R(x,y,z) (x)P(x) (x)(z)Q(x,z) (z)R(x,y,z) (x) P(x) (x)(z)Q(x,z) (u)R(x,y,u) (x)( P(x) (z)Q(x,z) (u)R(x,y,u) (x) (z) (u)( P(x) Q(x,z) R(x,y,u) 前束合取范式 (x) (z) (u)( P(x) Q(x,z) R(x,y,u) (P(x) Q(x,z) R(x,y,u) (P(x) Q(x,z) R(x,y,u) (P(x) Q(x,z) R(x,y,u) ( P(x) Q(x,z) R(x,y,u) ( P(x) Q(x,z) R(x,y,u) ( P(x) Q(x,z) R(x,y,u) 前束析取范式 d)(x)(P(x) Q(x,y) (y)P(y) (z)Q(y,z) (x)( P(x) Q(x,y) (y)P(y) (z)Q(y,z) (x)( P(x) Q(x,y) (u)P(u) (z)Q(y,z) (x) (u) (z) ( P(x) Q(x,y) (P(u) Q(y,z) 前束析取范式 (x) (u) (z) ( P(x) P(u) (P(x) Q(y,z) ( Q(x,y) P(u) ( Q(x,y) Q(y,z) 前束合取范式 習(xí)題 2-7 (1) 證明: (2) a) (x)( A(x) B(x) P A(u) B(u) US ( x) B(x) P B(u) US A(u) B(u) TE A(u) TI ( x)A(x) EG b) ( x)(A(x) B(x) P(附加前提) ( x) (A(x) B(x) TE (A(c) B(c) ES A(c) TI B(c) TI ( x)A(x) EG (x)A(x) (x)B(x) P (x)B(x) T I B(c) US B(c) B(c) T矛盾 c) (x)(A(x) B(x) P A(u) B(u) US ( x)(C(x) B(x) P C(u) B(u) US B(u) A(u) TE C(u) A(u) TI (x)(C(x) A(x) UG d) (x)(A(x) B(x),( x)(B(x) C(x),( x)C(x) (x)A(x) ( x)(B(x) C(x) P B(u) C(u) US ( x)C(x) P C(u) US B(u) TI (x)(A(x) B(x) P A(u) B(u) US A(u) T I (x)A(x) UG (2) 證明: a) ( x)P(x) P(附加前提) P(u) US (x)(P(x) Q(x) P P(u) Q(u) US Q(u) TI (x)Q(x) UG ( x)P(x) (x)Q(x) CP b)因?yàn)?(x)P(x) (x)Q(x) (x)P(x) (x)Q(x) 故本題就是推證 (x)(P(x) Q(x) (x)P(x) (x)Q(x) (x)P(x) P(附加前提) ( x) P(x) TE P(c) ES (x)(P(x) Q(x) P P(c) Q(c) ES Q(c) TI ( x) Q(x) EG (x)P(x) (x)Q(x) CP (3) 解: a)設(shè) R( x) : x是實(shí)數(shù)。 Q( x) : x是 有理數(shù)。 I( x) : x是整數(shù)。 本題符號(hào)化為: (x)(Q(x) R(x) (x)(Q(x) I(x) (x)(R(x) I(x) (x)(Q(x) I(x) P Q(c) I(c) ES (x)(Q(x) R(x) P Q(c) R(c) US Q(c) TI R(c) TI I(c) TI R(c) I(c) T I (x)(R(x) I(x) EG b)設(shè) P( x) : x喜歡步行。 Q( x) : x喜歡乘汽車(chē)。 R( x) : x喜歡騎自行車(chē) 本題符號(hào)化為: (x)(P(x) Q(x), (x)(Q(x) R(x) , (x) R(x) (x) P(x) (x) R(x) P R (c) ES (x)(Q(x) R(x) P Q(c) R(c) US Q(c) TI (x)(P(x) Q(x) P P(c) Q(c) US P (c) T I (x) P(x) EG c) 每個(gè)大學(xué)生不是文科學(xué)生就是理工科學(xué)生,有的大學(xué)生是優(yōu)等生,小張不是理工科學(xué)生,但他是優(yōu) 等生,因而如果小張是大學(xué)生,他就是文科學(xué)生。 設(shè) G( x) : x是大學(xué)生。 L( x) : x是文科學(xué)生。 P( x) : x是理工科學(xué)生。 S( x) : x是優(yōu)秀生。 c:小張。 本題符號(hào)化為: (x)(G(x) L(x) P(x), (x)(G(x) S(x), P (c) , S(c) G(c) L(c) G(c) P(附加前提) (x)(G(x) L(x) P(x) P G(c) L(c) P(c) US L(c) P(c) TI P (c) P L(c) TI G(c) L(c) CP 注意:本題推證過(guò)程中未用到前提 (x)(G(x) S(x)以及 S(c)。主要是 S( x

注意事項(xiàng)

本文(離散數(shù)學(xué) 課后習(xí)題答案)為本站會(huì)員(飛****9)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!