應(yīng)用概率統(tǒng)計 課后答案
課后答案網(wǎng),用心為你服務(wù)!大學答案 - 中學答案 - 考研答案 - 考試答案最全最多的課后習題參考答案,盡在課后答案網(wǎng)(www.khdaw.com)!Khdaw團隊一直秉承用心為大家服務(wù)的宗旨,以關(guān)注學生的學習生活為出發(fā)點,旨在為廣大學生朋友的自主學習提供一個分享和交流的平臺。愛校園(www.aixiaoyuan.com) 課后答案網(wǎng)(www.khdaw.com) 淘答案(www.taodaan.com)!"#%$%&%(%)%*%+-,-.0/1#%1%&%(%2%3%+-,04-561.798:<=>p?ABC;GFDDEEHIpk = P (= k) = qk1p;k = 1; 2; :FKJq= 1p.2.67(1), L = 2 M;ONP( = 2) = pq + qp = 2pq, PRQSfUWVTXYOZUWXgAGVYa L = 3 M;GNP( = 2) = p2q + q2p PRQSfUWVTVXYGZbUWXgA7XVYcd;Le= k M;P (= k) = pk1q + qk 1p = pq(pk 2 + qk 2;k = 2; 3; 4; :(2), L = k M;GfKgihkjkl(FVmp);Gnk1 jJiNr 1 jklVm;GrPFopm 11pr 1(1 p)k1(r1) = Ckr11pr qk r ;pk = P ( = k) = pCkrk = r + 1; r + 2; :;FKJq= 1 p.3.67(1), L 1 = k M;GfKgiskA5tu?vwkx;GFA4ouy k +z1; :; 10, rC 4P ( 1 = k) =10 k;k = 1; 2; :; 6:C 510L 3 = k M;OfKgiskA5tu?Nvuy 1; z2;:; k1 ;OF2ouyk +z1; :; 10, rC 21C 2kP ( 3 = k) =k10; k = 3; 4; :; 8:C 5105(2), |M10Gu?f1=S1gT= f5 jtKJicjN1g ;Gr15P ( 1 = 1) =C5i95 i :X105i=1STf 1 = 10g = f5 jt10gt;G|1P (1 = 10) = 105 :1L k = 2; :; 9 M;if 1 = kg = f 1 kg f 1 k 1g;15P ( 1k)=XC5iki(10k)5i ;10i=115P ( 1k1)=XC5i(k1)i 10(k1)5 i :10i=1qP ( 1 = k) =15k)5i(k1)i (11k)5i:C5iki (10X10 i=14.67 2 f2; 3; :; 12g, FDE23456789101112P ( = k)1234565432136363636363636363636365.67Bn(m)Nj?NjM;Gm jMn;AmmnP ( = n) =XP (Bn(m)jAm )P (Am )m=1n11pmqn m 1(11=m=1 Cnmw )mXn11pk+1qn k 11=k=0 Cnm1 (1w )k+1X1p=pp(1)1)n 1wwppp= p 1 (1)n 1 + (1)n 1(1)n ;wwwFKJk= m1; p = 1p.67KiA;G2jf1;?2; :g. B Kikj;Gnk1 jJi;Ghkj. Ji;C ikj;ink1 jK;Ji;ihkjKiJJiAkKhkjJi;MBk ihk jJM1Akf = kg = B + C = A1B1 A2B2 :Ak 1Bk+ A1 B1A2 B2:Ak1 Bk1Ak Bk :2ipk=P (= k) = P (B) + P (C )=(0:6 0:4)k 10:4 + (0:6 0:4)k 10:6 0:6=(0:24)k 10:76 = qk 1p; k = 1; 2; :Q<=>p?0:76 ABC7DE A;Gj2?f0; 1; 2; :g. STf = 0g KhcjJi;Grp0 = P (= 0) = 0:4:k1 M;f = kg = A1 B1A2 B2:Ak1 Bk1Ak Bk + A1 B1 A2B2:Ak Bk Ak+1qNpk = P ( = k) = (0:6 0:4)k 1 0:6 0:6 + (0:6 0:4)k 0:4=(0:24)k 10:456;k = 1; 2; :; ADqEBCDE7.7(1) g (x) =1x+h F (t)dt I100hRx) = 0, 30; (x0)(x)()., ;2; (+1) = 1; (10 , L x > y M;= xy (> 0), ZF (t)dt#(x)(y) =h "ZxF (t)dty1x+hy+hZyF (t)dt# :=h "Zy+F (t)dt1y+ +hy+h< h, "ZxZyF (t)dt#(x)(y) =hF (t)dt1x+hy+h="Zy+F (t)dtZyF (t)dtZy+F (t)dt#h1y+ +hy+y+h="Zy+hF (t)dtZyF (t)dt#h1y+h+y+=F (y + h +1)F (y +2)0;( iy+ h +1> y +2)FKJ0<1; 2 < 1, wcuJiD3 0 < h;G(x)(y) = F (y + + 1h) F (y + 2h) 0 L h < 0 MgiQ8h; (x) 720 ,DJi(x)= F (x + h), FKJ0< < 1 ;GK8limF (x) = 1;x!+1<x limF (x) = 0:!Q8lim(x) = 1<x!+1(x) = 0:3 ,(x) = F (x + h),F :limx!0i(x) ;Glim(y) = lim F (y + h) = F (x + h) = (x);y!xy!xQ8.7(1) i NZ +1 1 dF (y) = 1 F (y)j+1 + Z +1 1 F (y)dy =xyyxxy2x!+1 x Z+1 1x!+1F (x)xy dF (y) =xlimlimx=limF (x) +x!+1x F (x) + Z+y2 F (y)dy;x 111+1 y2 F (y)dy+ Zx1R+11F (y)dyx +2x1limy! 1x1F (x)2=1 + limx= 1 + 1 = 0:1x!+1x2(2) gi(1) ;Gr(3) L x > 0 M; Rx+1 y1 dF (y) < +1, 7Rx+1 y1 dF (y) = +1, KiZ+1y dF (y) <Z+1y2 F (y)dy;xx11R+11F (y)dy = +1, qNxy2+1+11x 1F (y)dylimxdF (y) =lim F (x) +limy2R1x!0+Zxyx!0+x!0+x1F (x)2=lim F (x) +limx1x!0+x!0+x2=lim F (x) +limF (x) = 0:x!0+x!0+4610.7( ; ) q A Jic;G( ; ) A p.d.f.f (x; y) = (1; (x; y)A= (1; 0 < y < 2x x2; 0x20;F20;F(A)(A)FKJ(A) = R02(2x x2 )dx = (x21x3 )j02 =4. | Ap.d.f.33Z(0;F1 f (x; y)dy =3(2x x2); 0x2f(x) =46 IGL0 x2 M; ADE?3x1Z0F (x) = P ( < x) =(2t t2)dt =(3x2x3);44QF (x)=f (x)=8 4(3x2x3); 0 < x2 ;>0;x01<1;x > 2>(2xx ); 0x2:=Z1f (x; y)dy =4:dx(0;2FdF (x)3611.7ABC A“h;G”AB L 0 < x < h M;ADE?112F (x) = P ( < x) =2ABh2AB(hx);12ABh A ;BVcKi;Gfifly= x ABC A0;B0 ;G|A0B=AB =h x;A0B0= ABhx;hh(hx)2F (x) = 1:h2Q613.8> 0;<F (x) =1>: 1;(h x)2x0;0 < xh :h2x > h75,P (k) = P (1k) = P (1k) = 1P (< 1k) = 0:25, | P (< 1k) =0:r 1 k = 0; 29; k = 0:71.515.7P(). Ki1Xpk = P (= k) =P (= kj= j)P (= j):j=ki j = j B(j; p), r P ( = kj = j) = Cjk pk (1p)j k ;G1kkj k jpk =XCj p (1p)rj=kj!1j!kj k j=Xp (1 p)rj=kk!(jk)!j!=k pk e1j k(1 p)j kXk!j=k(jk)!k pk=ek!( p)k=ek!QP(p)19.67F(x) Alim F (x) = A = 1,x!1e(1p)p;k = 0; 1; 2; :Q A = 1,f (x) = F 0(x) =( 0;F2x; 0 < x < 1620.7(1),Z xF (x) = P ( < x) =f (t)dt8 2 x28 2 x2;0 < x1;0 < x1>0;x0>0;x011=1123=12>+ 2xx; 1 < x2>2xx1; 1 < x22222>><1;x > 2<1;x > 2>>>>>>:(2) P ( < 0:5) = F (0:5) =10:52= 0:125.2P ( > 1:3) = 1 F (1:3) = 12 1:3 +1(1:3)2 + 1 = 0:245;2P (0:2 < < 1:2) = F (1:2) F (0:2) = 2 1:21(1:2)211(0:2)2 = 0:66:22621.67(1)111F1 (y) = P ( 1 < y) = P< y = P>= 1 FyydF1 (y)11011f1(y) = f=fdyyyy2y12; 0 <1< 1= (2; 0 < y <1=3y2( 0;F0;Fyyy(2)(2jjP ( y < < y); y > 0F (y) F ( y); y > 0F(y) = P (< y) =0;y0=0;y02dy(f(y) + f ( y); y > 0( f (y); y > 0f(y) =dF1 (y)=0;y0=0;y0=8 2y; 0 < y < 1 = ( 0;F>0;y02y; 0 < y < 1<0;y1>(3):F3(y) = P e < y = P (< ln y)= P ( > ln y) = 1 F ( ln y):f3(y) =dF1 (y)=1f ( ln y)dyy(2 ln y;0F= (2 ln y=0; y0; y< ln y < 122.67(1) ADE;e1 < y < 1FnXpn=P (= n) =pnmm=0nenn=Cnmpm (1 p)n m =e ; n = 0; 1; 2; :Xn!m=0n!QP().(2) ADE1Xpm=P (= n) =pnmn=m7QP(p).23.67(1)f (x)=f (y)=pm me1 (1p)n m=Xm!n=m(nm)!pm mee (1p) =( p)m=e p; m = 0; 1; 2; :m!m!+f (x; y)dy =(+1x1= (x0;xe(1+y)2 dy;x00;x0Z10x > 0xex >0;+(R+1x1= (1f (x; y)dx =xe(1+y)2 dx;y00;2y00;Z1R0y > 0(1+y) ;y >0; f (x; y) = f (x)f (y), 7(2)f (x)=+1f (x; y)dy =x1 8xydy;0x < 1=(4(xx3 ); 0x < 1Z(0;F0;FRf (y)=+1f (x; y)dx =0y 8xydx;0y < 1=(4y3; 0y < 1Z(0;F0;FR f (x; y) 6= f (x)f (y), 7(3)f (x; y)dy = (f (x) =0;k1 ) k2 )x0Z+1R+11xk11(yx)k21eydy;x > 0x+111(xk11tk21e x etdt;x > 0= (xk11e x; x > 0=k1 )k2 )0;k1 )0;x0x0R0Q624.7(1)f (x)f (y)k1 ; 1), k2 ; 1), f (x; y) =6 f (x)f (y), 7( 0;F( 0;2xF=+1f (x; y)dy =R2x2 +xydy; 0x1=2x2 +;0x1033Z( 0;F( 0;F=+1f (x; y)dx =R1x2 +xydx; 0y2=10y2036 (2 + y);Z(2) L 0 y 2 M;f (x; y)f j (xjy)=f (y)8(3)(4)FKJ8x2+xy(6x2 +2xy30;F0;F<2+y;0x1=61(2+y) ;0x1=:P ( + > 1)=P ( ; ) 2 D) = ZZD f (x; y)dxdy12xy=Z0dx Z1 x x2 +dy31x2(1 + x) +x4 (1 x)2 dx=Z06154165=Z0x3 +x2 +xdx =6327211=P<1; <1;P<<222 j2P<12112