φ20-φ90高精度棒材矯直機(jī)設(shè)計【5張CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=
重慶科技學(xué)院畢業(yè)設(shè)計(論文)開題報告設(shè)計題目2090高精度棒材矯直機(jī)設(shè)計學(xué)生姓名 劉 川 學(xué) 號 2004440118專 業(yè) 機(jī)械設(shè)計制造及其自動化 院 (系) 機(jī) 械 工 程 學(xué) 院 指導(dǎo)教師 陳 祥 偉 年 月 日開題報告填寫要求1.開題報告作為畢業(yè)設(shè)計(論文)答辯委員會對學(xué)生答辯資格審查的依據(jù)材料之一。此報告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(論文)工作開始后2周內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見及教研室審查后生效;2.開題報告內(nèi)容必須用黑墨水筆工整書寫或按教務(wù)處統(tǒng)一設(shè)計的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)址上下載)打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時交給指導(dǎo)教師簽署意見;3.學(xué)生查閱資料的參考文獻(xiàn)理工類不得少于10篇,其它不少于12篇(不包括辭典、手冊);4.“本課題的目的及意義,國內(nèi)外研究現(xiàn)狀分析”至少1000字,其余內(nèi)容至少1000字。畢業(yè)設(shè)計(論文)開題報告1.本課題的目的及意義,國內(nèi)外研究現(xiàn)狀分析 (1)棒材矯直機(jī)設(shè)計的目的和意義金屬棒材在軋制、加熱、運(yùn)輸?shù)雀鞣N加工過程中常常產(chǎn)生不同程度的彎曲、歪扭等塑性變形或內(nèi)部殘余應(yīng)力;目前冶金市場上對金屬棒材的成品精度要求也越來越高,因此軋制矯直設(shè)備在工廠中應(yīng)用越來越普遍,對矯直設(shè)備的自動控制要求也越來越高。(2)棒材矯直機(jī)國內(nèi)外研究現(xiàn)狀分析長期以來,壓力矯直機(jī)因彎曲由人工檢測,壓彎量人為設(shè)定不夠準(zhǔn)確,全過程都靠手工操作,效率低,矯直精度全憑操作者經(jīng)驗(yàn)來決定等缺點(diǎn),一直作為一種補(bǔ)充矯直設(shè)備來使用。壓力矯直必須檢測工件的原始彎曲,測量彎曲量、確定最佳矯直點(diǎn)、設(shè)定壓彎量。由于缺少可靠的檢測手段和認(rèn)識上的一些人為因素,以前這些工作只能靠人工來完成。因此以前的壓力矯直機(jī)有以下缺點(diǎn):彎曲人工檢測、壓彎量人工設(shè)定不夠準(zhǔn)確,效率低,矯直精度全憑操作者經(jīng)驗(yàn)來決定,降低了生產(chǎn)效率。隨著機(jī)械工業(yè)和國民經(jīng)濟(jì)各部門生產(chǎn)的發(fā)展和技術(shù)進(jìn)步,對鋼材產(chǎn)品質(zhì)量的要求越來越高。矯直是軋制生產(chǎn)中不可缺少的重要工序,對于軋件來講,矯直主要用于解決軋件的彎曲、歪扭等塑性變形或內(nèi)部殘余應(yīng)力。矯直機(jī)的結(jié)構(gòu)參數(shù)和力能參數(shù)是設(shè)計和使用矯直機(jī)的主要依據(jù),參數(shù)的合理與否,直接影響矯直機(jī)的使用性能。相對一定的矯直條件和矯直精度要求,存在著最少彎曲次數(shù)允許值,雖然增加彎曲次數(shù)可提高矯直精度,但機(jī)體的尺寸、重量、加工、維護(hù)及能耗等都相應(yīng)有所增加,因此有必要確定矯直軋件所需的最佳彎曲次數(shù)。國際上運(yùn)用計算機(jī)、液壓控制技術(shù),實(shí)現(xiàn)了壓力矯直的自動化、智能化,使壓力矯直機(jī)得以融入連鑄或鍛造生產(chǎn)線,成為在線設(shè)備。使生產(chǎn)效率得到了大大的提高。二輥矯直機(jī)是斜輥矯直機(jī)的一種, 但其工作原理在斜輥矯直機(jī)中獨(dú)具特點(diǎn),如圖1 所示: 在多斜輥矯直機(jī)出現(xiàn)前后,人們創(chuàng)造出了二斜輥矯直機(jī),它的矯直功能來自于輥形的凹凸變化,它是以矯直短圓材的獨(dú)特性能而受到重視,并填補(bǔ)了這種矯直機(jī)的空白, 它又以能矯直圓材兩端和能壓光圓材表面( 輥?zhàn)有苯呛苄r)而得到不斷發(fā)展。圖1二輥矯直機(jī)示意圖二輥棒材矯直機(jī)由于矯直精度高、造價低,可矯直輕中型棒材、管材,在治金工業(yè)和機(jī)械制造業(yè)中有廣泛應(yīng)用。現(xiàn)在在我國國內(nèi)中信重型機(jī)械公司洛陽礦山廠、無錫西漳液壓機(jī)械廠等很多廠家。而國外如英國的布朗克斯公司、維柯公司及羅伯運(yùn)(R0一BETSON)公司;法國的I)MS公司及艾梯巴爾(ErllBAR)公司:德國的索林堅(sOLINGEN)公司和斯蘭特(sIAN7、)公司;美國的薩頓(sLTION)公司;日本的川副機(jī)械公司;前蘇聯(lián)的基洛夫機(jī)床廣等??梢陨a(chǎn)這種斜二輥輥矯直機(jī)。畢業(yè)設(shè)計(論文)開題報告2.本課題的任務(wù)、重點(diǎn)內(nèi)容、實(shí)現(xiàn)途徑 設(shè)計(論文)的主要內(nèi)容: (一)設(shè)計參數(shù):1. 矯直棒材規(guī)格:20902. 矯直棒材材料:合結(jié)鋼、不銹鋼(s=1200N/mm2)3.棒材原始曲率:0.4%(mm/m)4.矯直后直度:0.05%(mm/m)5.棒材原始表面:Ra3.26.棒材矯直后表面:Ra0.87.最大矯直速度:330m/min8.最大矯直力:300KN9.采用液壓過載保護(hù) 10.采用循環(huán)潤滑與循環(huán)冷卻11.自動上下料(二)整機(jī)設(shè)計、潤滑系統(tǒng)選型設(shè)計、整機(jī)設(shè)備安裝與維護(hù)方案制定設(shè)計(論文)任務(wù)要求:滾光矯直機(jī)力能參數(shù)計算與結(jié)構(gòu)設(shè)計、潤滑系統(tǒng)選型設(shè)計。具體要求如下:1.進(jìn)行相關(guān)資料查閱,完成文獻(xiàn)綜述,英文資料翻譯,完成開題報告2.進(jìn)行總體方案論證及選型,主要理論參數(shù)計算與優(yōu)化3.采用計算機(jī)繪圖完成總機(jī)裝配圖、輥系裝配圖4.完成15000字左右的設(shè)計說明書5.答辯(三)實(shí)現(xiàn)途徑 對于如何實(shí)現(xiàn)棒材的直度和滾光表面:以前人們采用平行輥矯直機(jī)矯直管、棒等圓形斷面條材,但是平行輥矯直機(jī)在矯直管、棒等圓形斷面條材時存在兩個致命的缺點(diǎn):第一:平行輥矯直機(jī)只能矯直圓材垂直于輥軸的縱向剖面上的彎曲。若矯直其他各方位的縱向剖面的彎曲常需要進(jìn)行多次的變方位的矯三過程;第二,圓材在矯直過程中容易產(chǎn)生自轉(zhuǎn)現(xiàn)象,不僅達(dá)不到矯直目的,反而要產(chǎn)生嚴(yán)重的螺旋形彎曲(俗稱麻花彎),使產(chǎn)品報廢。究其原因,前者是圓材彎曲具有全方位的特性,在矯直某一縱向剖面時對與其垂直的縱向剖面無矯直能力,即對側(cè)向彎曲不能矯直。后者乃系偏心壓彎條件下輥?zhàn)訉A材壓力將構(gòu)成對圓材軸向轉(zhuǎn)矩,當(dāng)這種轉(zhuǎn)矩超過輥面與圓材之間的摩擦轉(zhuǎn)矩時,圓材便三立生自轉(zhuǎn)。而自轉(zhuǎn)一旦產(chǎn)生便將連續(xù)不斷。由自轉(zhuǎn)形成的螺旋彎曲也將越轉(zhuǎn)越嚴(yán)重。所以我們這里采用二輥棒材矯直機(jī)矯直,工作輥的上輥為凹輥,下輥為凸輥,上下輥均為傳動輥,輥?zhàn)拥慕嵌群透叨日{(diào)整是電動的,輥?zhàn)觾蓚?cè)有導(dǎo)板,導(dǎo)板用液壓缸打開和鎖緊。利用二輥的弧度、剛度以及兩輥之間的傾角來控制棒材軋件,來達(dá)到矯直和滾光的目的。對于如何實(shí)現(xiàn)液壓過載保護(hù)及其潤滑:液壓系統(tǒng)是控制工作輥不可缺少的重要組成部分。它不僅為執(zhí)行元件提供動力,同時也控制各執(zhí)行元件的動作,使各執(zhí)行元件按設(shè)定的程序運(yùn)行。由于液壓系統(tǒng)在國內(nèi)已很成熟,在此我們采用液壓控制系統(tǒng)來控制工作輥以提高矯直精度,同時利用液壓系統(tǒng)實(shí)現(xiàn)過載保護(hù):1) 主控系統(tǒng)采用插裝式邏輯錐閥控制,并通過功能元件來調(diào)節(jié)主閥芯的開啟時間及速度,以滿足大流量、快速、無沖擊、噪音小的要求。為了保證控制閥的質(zhì)量及其可靠性,先導(dǎo)閥等采用力士樂的產(chǎn)品;2) 主缸、側(cè)缸均有高壓卸荷功能,減小液壓沖擊,保證壓機(jī)運(yùn)行平穩(wěn),振動小。3) 為防止壓機(jī)工作過程中壓力失控或考慮某些機(jī)械零部件的安全性,該系統(tǒng)采用壓力傳感器及溢流閥聯(lián)合使用, 對主、側(cè)缸進(jìn)行限壓保護(hù)。潤滑采用循環(huán)潤滑與循環(huán)冷卻。對于如何實(shí)現(xiàn)自動上下料:1 上料機(jī)構(gòu):上料機(jī)構(gòu)由升降式臺架,對齊輥道,步進(jìn)運(yùn)輸機(jī)組成。步進(jìn)運(yùn)輸機(jī)由油缸驅(qū)動升降;電機(jī)減速機(jī)驅(qū)動齒輪齒條副平移,電機(jī)變頻控制,可以實(shí)現(xiàn)棒料的平穩(wěn)、快速、無沖擊運(yùn)輸??梢蕴岣咴O(shè)備運(yùn)行的穩(wěn)定性,延長設(shè)備使用壽命。2 送料小車:送料小車可以夾持棒料,實(shí)現(xiàn)棒料前進(jìn)、后退、旋轉(zhuǎn)等動作。配合檢測系統(tǒng)可以對棒料實(shí)施三維掃描。棒料夾持采用三爪自動夾盤裝置,旋轉(zhuǎn)由電機(jī)減速機(jī)驅(qū)動齒輪副帶動卡盤旋轉(zhuǎn),小車行走由電機(jī)減速機(jī)驅(qū)動鏈輪鏈條牽動小車運(yùn)動。3 出料系統(tǒng):出料系統(tǒng)由步進(jìn)運(yùn)輸機(jī)、出料輥道組成。步進(jìn)運(yùn)輸機(jī)與上料機(jī)構(gòu)相同。出料輥采用彈性浮動輥。可以防止矯直時輥道因承壓而被壓壞。3. 預(yù)計可能遇到的困難,提出解決問題的方法和措施 (1) 預(yù)計可能遇到的困難:1)矯直的軋件可能達(dá)不到題目的要求精度問題;2)液壓傳動系統(tǒng)的設(shè)計、高溫惡劣環(huán)境下液壓傳動系統(tǒng)的泄露問題;3) 參數(shù)的計算過于復(fù)雜以及潤滑、自動上下料等問題 。(2) 提出解決問題的方法和措施1)可以提高工作輥的剛度、調(diào)整工作輥的傾角、調(diào)整工作輥的弧度;2)對液壓系統(tǒng)進(jìn)行優(yōu)化設(shè)計,合理選擇液壓油,做好密封和日常維護(hù)工作,防止或減少液壓油的泄露;3)對于參數(shù)設(shè)計采用計算機(jī)輔助建立數(shù)學(xué)模型、采用高質(zhì)量潤滑油和運(yùn)用液壓系統(tǒng)控制運(yùn)輸機(jī),出料軌道。畢業(yè)設(shè)計(論文)開題報告4.完成本課題所需的工作條件(如工具書、計算機(jī)、實(shí)驗(yàn)、調(diào)研等)及解決辦法 (一)工具書1崔甫矯之技術(shù)與矯直原理:冶金工業(yè)出版社,2005年4月(第二版) 2 濮良貴機(jī)械設(shè)計:高等教育出版社,2001年6月(第七版)3 劉鴻文材料力學(xué) : 高等教育出版社,2004年1月(第四版)4 劉建臣 AutoCAD2004中文版 :國防工業(yè)出版社,2004年1月5 鄒家祥軋鋼機(jī)械:冶金工業(yè)出版社,2000年2月(第三版)6 王章忠機(jī)械工程材料:機(jī)械工業(yè)出版社,2006年1月(第一版)7 李坤機(jī)械維護(hù)與安裝:化學(xué)工業(yè)出版社,2004年2月8 劉延俊液壓與氣壓傳動 :機(jī)械工業(yè)出版社,2007年2月(第二版)9 王春行液壓控制系統(tǒng):機(jī)械工業(yè)出版社,2007年8月(第一版)10 羅振才冶金機(jī)械設(shè)計方法:冶金工業(yè)出版社,1993年4月11 唐金松簡明機(jī)械設(shè)計手冊:上??萍汲霭嫔?,1992年6月12摩檫摩損與潤滑 :石油工業(yè)出版社13 石洪衛(wèi)冶金管理雜志 :冶金管理雜志出版社,2008年1月14 汪學(xué)瑤特殊鋼雜志:特殊鋼雜志出版社,2008年2月15 李茂基.軋鋼機(jī)械M北京:冶金工業(yè)出版社,1998(二)解決方法:1.計算機(jī):運(yùn)用計算機(jī)畫CAD圖、處理一些相關(guān)文獻(xiàn)資料以及計算一些相關(guān)數(shù)。2.工具書:首先是老師為我提供了很多關(guān)于軋鋼機(jī)械、矯直與矯直原理等方面的書籍。在此之外,還可以通過在學(xué)校圖書館以及通過網(wǎng)絡(luò)搜索出相關(guān)的資料,豐富自己的理論知識。為自己的課題研究提供所需要的信息。5.進(jìn)度計劃(或工作方案分析)2月24日3月07日:查閱相關(guān)資料,確定設(shè)計思路,完成開題報告和文獻(xiàn)綜述。3月08日3月14日:完成相關(guān)文獻(xiàn)的外文翻譯。3月15日3月31日:完成本次課題研究的相關(guān)設(shè)計計算。4月01日4月30日:完成所要求的零件圖、裝配圖。5月01日5月31日:進(jìn)一步完善本次課題的其他工作,準(zhǔn)備答辯。畢業(yè)設(shè)計(論文)開題報告指導(dǎo)教師意見:(對本課題的深度、廣度及工作量的意見和對設(shè)計結(jié)果的預(yù)測) 指導(dǎo)教師簽名 年 月 日教研室審查意見: 教研室負(fù)責(zé)人簽名 年 月 日重慶科技學(xué)院學(xué)生畢業(yè)設(shè)計(論文)文 獻(xiàn) 綜 述題目 20 90 高 精 度 棒 材 矯 直 機(jī) 學(xué)生姓名 劉川 學(xué)號 2004440118 院(系) 機(jī) 械 工 程 學(xué) 院 指導(dǎo)教師簽字 學(xué)生成績(百分制) 教 務(wù) 處 制文獻(xiàn)綜述要求1.文獻(xiàn)綜述是要求學(xué)生對所進(jìn)行的課題搜集大量情報資料后綜合分析而寫出的一種學(xué)術(shù)論文。其特點(diǎn)“綜”是要求對文獻(xiàn)資料進(jìn)行綜合分析、歸納整理,使材料更加精練明確、更有邏輯層次;“述”就是要求對綜合整理后的文獻(xiàn)進(jìn)行比較專門的、全面的、深入的、系統(tǒng)的描述和評價。2.文獻(xiàn)綜述中引用的中外文資料,內(nèi)容必須與課題或?qū)I(yè)方向緊密相關(guān),理工類不得少于10篇,其它不少于12篇。3.文獻(xiàn)綜述不少于2000字,按規(guī)定格式用鋼筆工整書寫。其所附注釋、參考文獻(xiàn)格式要求同正文。文獻(xiàn)綜述的評閱評閱要求:應(yīng)根據(jù)學(xué)?!拔墨I(xiàn)綜述要求”,對學(xué)生的文獻(xiàn)綜述內(nèi)容的相關(guān)性、閱讀數(shù)量以及綜述的文字表述情況等作具體的評價。指導(dǎo)教師的評語:指導(dǎo)教師簽名 年 月 日文獻(xiàn)綜述摘要:本文對鋼材矯直工藝及工作原理,斜輥矯直機(jī)的工作原理、特點(diǎn)、結(jié)構(gòu)等進(jìn)行了介紹,同時對二輥棒材矯直機(jī)力能參數(shù)的計算進(jìn)行了分析,提出了本次設(shè)計二輥棒材矯直機(jī)的基本思路。關(guān)鍵詞:棒材 矯直工藝 二輥棒材矯直機(jī) 矯直力能參數(shù)前言金屬棒材在軋制、加熱、運(yùn)輸?shù)雀鞣N加工過程中常常產(chǎn)生不同程度的彎曲、歪扭等塑性變形或內(nèi)部殘余應(yīng)力;目前冶金市場上對金屬棒材的成品精度要求也越來越高,因此軋制矯直設(shè)備在工廠中應(yīng)用越來越普遍,對矯直設(shè)備的自動控制要求也越來越高。在多輥棒材矯直機(jī)中,其矯直輥由多個輥?zhàn)咏M成;設(shè)備在矯直過程中由于其棒材的彎曲程度不同;設(shè)備的矯直輥要頻繁地進(jìn)行壓下及轉(zhuǎn)角的調(diào)整(以下簡稱調(diào)整)。在國內(nèi)大多數(shù)同類設(shè)備中,其調(diào)整靠工人依據(jù)設(shè)備上的標(biāo)尺,手動控制進(jìn)行。對于多輥設(shè)備調(diào)整起來就非常的麻煩,所需時間較長,為了提高生產(chǎn)率,必須提高設(shè)備的自動化程度,輥系的自動調(diào)整成為必然趨勢。隨著液壓控制技術(shù)的發(fā)展,運(yùn)用三維掃描檢測技術(shù)、跟隨式檢測機(jī)構(gòu)、壓力矯直專家系統(tǒng)等專有技術(shù),實(shí)現(xiàn)了壓力矯直的自動化、智能化,使壓力矯直機(jī)得以融入連鑄或鍛造生產(chǎn)線,成為在線設(shè)備。使生產(chǎn)效率有了很大的提高。矯直原理及矯直機(jī)分類根據(jù)結(jié)構(gòu)特點(diǎn)和工作原理的不同,矯直機(jī)可以分為壓力矯直機(jī)、輥式矯直機(jī)、斜輥矯直機(jī)、拉伸矯直機(jī)和拉彎矯直機(jī)等幾種基本類型。壓力矯直機(jī) :壓力矯直機(jī)是以曲柄連桿機(jī)構(gòu)驅(qū)動的活動壓頭使軋件產(chǎn)生一次反向彎曲,將軋件矯直的。“矯枉必須過正”就是壓力矯直機(jī)的基本矯直原理。這種矯直機(jī)人工操作繁重、生產(chǎn)效率低,但調(diào)整靈活,對于各種局部彎曲狀態(tài),都具有矯直的可能性,一般只有用來矯直大型鋼梁、鋼軌和大直徑(大于200300mm)鋼管,或用作輥式矯直機(jī)的補(bǔ)充矯直。壓力矯直機(jī)有立式和臥式兩種結(jié)構(gòu)。輥式矯直機(jī):輥式矯直機(jī)具有兩排交錯布置的工作輥,彎曲的軋件通過轉(zhuǎn)動的工作輥之間,經(jīng)過多次反復(fù)彎曲得以矯直。軋件能以較高的速度在運(yùn)動中進(jìn)行連續(xù)矯直,生產(chǎn)效率高,且易于實(shí)現(xiàn)機(jī)械化和流水生產(chǎn),輥式矯直機(jī)在型鋼車間和板帶材車間得到廣泛的應(yīng)用。輥式矯直機(jī)的一類型很多。其中按上排工作輥的調(diào)整方式分,基本上可以歸納為三類:單獨(dú)調(diào)整、平行調(diào)整和傾斜調(diào)整。斜輥式矯直機(jī):斜輥式矯直機(jī)用于矯直管材和圓棒材。這種矯直機(jī)的工作輥具有類似雙曲線的空間曲線的形狀,兩排工作輥軸線相互交叉,管棒材在矯直時邊旋轉(zhuǎn)邊前進(jìn),也是利用多次反復(fù)彎曲軋件,最終消除各方面的彎曲和端面的橢圓度。這類矯直機(jī)的設(shè)備重量輕,易于調(diào)整和維修,矯直管棒材效果好。其中可以按工作輥數(shù)量分類,而本文介紹的二輥矯直機(jī)就是其中的一種。拉伸矯直機(jī):主要用于矯直厚度小于0.6mm的薄鋼板和有色金屬板材、管材、異型材。對于具有中間瓢曲或邊緣浪形的板帶材,雖有結(jié)構(gòu)復(fù)雜的支承輥分段可調(diào)的輥式矯直機(jī)加以矯直,但矯直效果不理想,這是需采用拉伸矯直方法。拉伸矯直的主要特點(diǎn)是對軋件施加超過材料屈服極限的張力,使之產(chǎn)生彈塑性延伸變形,從而將軋件矯直。拉伸彎曲矯直機(jī):為了提高帶材矯直質(zhì)量,近年來,拉伸彎曲矯直機(jī)組得到較大的發(fā)展。拉伸彎曲矯直的基本原理是在張力作用下的帶材,經(jīng)過彎曲輥劇烈彎曲時,產(chǎn)生彈塑性延伸,從而三維形狀缺陷得以消除。這種矯直機(jī)組一般用在連續(xù)作業(yè)線上,可以矯直各種金屬帶材(包括高強(qiáng)度極薄帶材),也可以用于酸洗機(jī)組進(jìn)行機(jī)械破磷,從而提高酸洗速度。此外,在有色金屬型材車間尚有扭轉(zhuǎn)式矯直機(jī),用于矯直型材的扭曲變形。二輥棒材矯直機(jī)二輥棒材矯直機(jī)由于矯直精度高、造價低,可矯直輕中型棒材、管材,在治金工業(yè)和機(jī)械制造業(yè)中有廣泛應(yīng)用。等曲率輥形的二輥機(jī)矯直過程數(shù)學(xué)力學(xué)模型比較簡明,易于分析。矯直輥是矯直機(jī)的關(guān)鍵部件,它一方面決定了矯直的精度、效率,另一方面在很大程度上決定了矯直機(jī)的結(jié)構(gòu)及機(jī)器制造成本 以往的輥型設(shè)計雖以矯直過程的力學(xué)分析為基礎(chǔ),但在輥型參效設(shè)計中往往采用經(jīng)驗(yàn)公式,其設(shè)計效率較低。等曲率輥?zhàn)拥妮佇蛥?shù)設(shè)計主要有四個:輥?zhàn)又睆?,輥長,輥?zhàn)觾A角和輥縫曲率。它們對矯直精度的影響關(guān)系很復(fù)雜,靠經(jīng)驗(yàn)設(shè)計難于求出最優(yōu)值。優(yōu)化設(shè)計是一種先進(jìn)的設(shè)計方法,它對提高設(shè)計質(zhì)量有很大的幫助。在文獻(xiàn)中已建立了矯直過程的力學(xué)模型和精度的數(shù)學(xué)模型,使優(yōu)化設(shè)計成為可能。而二輥棒材矯直機(jī)的矯直過程以及壓彎方式見圖(1)。圖1 2輥矯直過程及2種壓彎方式二輥矯直機(jī)是斜輥矯直機(jī)的一種, 但其工作原理在斜輥矯直機(jī)中獨(dú)具特點(diǎn),如圖2 所示: 在多斜輥矯直機(jī)出現(xiàn)前后,人們創(chuàng)造出了二斜輥矯直機(jī),它的矯直功能來自于輥形的凹凸變化,它是以矯直短圓材的獨(dú)特性能而受到重視,并填補(bǔ)了這種矯直機(jī)的空白, 它又以能矯直圓材兩端和能壓光圓材表面( 輥?zhàn)有苯呛苄r)而得到不斷發(fā)展。 圖2 二輥棒材矯直機(jī)示意圖矯直力能參數(shù) 主要參數(shù)計算: 其基本參數(shù)包括矯直力、矯直力矩、輥距t、輥徑D、輥數(shù)n、輥身長度L和矯直速度v0矯直機(jī)基本參數(shù)的正確選擇對軋件的矯直質(zhì)量、設(shè)備的結(jié)構(gòu)尺寸和功率消耗等都有重要的影響。矯直力的計算由于二輥矯直機(jī)輥形有單向彎曲與雙向彎曲之分,其矯直力也不同, 而矯直力大小與輥縫的壓彎程度密切相關(guān),由于本機(jī)型的輥形設(shè)計采用單向反彎曲輥形,因此按單向反彎曲輥形來計算矯直力。 輥形各段長度:輥腰段Sd=t,輥腹段Sd=t,輥胸段Sb=t。由于等彎曲率區(qū)內(nèi)的彎矩不變, 它必然由一個外力偶構(gòu)成工件內(nèi)部的等彎矩區(qū)。首先從圖3 上力F3來看,在Sb段內(nèi)它形成的彎矩是線性遞增的。雖然這個彎矩一開始是彈性彎矩,但很快增大為彈塑性彎矩( 彈性段長度可略去不計),新的力偶矩應(yīng)由F2來形成,而且只在轉(zhuǎn)半周之后就需形成F2Sd /2的力偶矩,以便在下半周內(nèi)完成M2的等彎矩彎曲。進(jìn)入到輥腰Sd段時,由于增大彎矩須達(dá)到M1值,故需在M2之外再增加一個力偶矩F2Sd /2 值。這種人為的受力模型是與輥形曲線的曲率變化過程基本一致的,是會接近實(shí)際受力狀態(tài)的,于是可以計算圖中的各矯直力:圖3 二輥矯直機(jī)雙向反彎輥受力簡圖確定傾角、輥距t、輥徑D、輥數(shù)n、輥身長度L、矯直速度v0和電機(jī)的驅(qū)動功率等參數(shù)。結(jié)語通過研究二輥矯直機(jī)的力能參數(shù),給出了二輥矯直機(jī)力能參數(shù)的確定方法。通過計算得出了矯直過程中的各部分力能參數(shù),為設(shè)計二輥矯直機(jī)提供了可借鑒的依據(jù)。參考文獻(xiàn)1 王海文.軋鋼機(jī)械設(shè)計M北京:機(jī)械工業(yè)出版社,19832 崔甫.矯直原理與矯直機(jī)械M北京:冶金工業(yè)出版社,20023 劉志亮.輥式板材矯直機(jī)力能參數(shù)實(shí)驗(yàn)分析J鞍鋼技術(shù),1993.44 周開勤.等1機(jī)械設(shè)計師實(shí)用手冊M天津:天津科學(xué)技術(shù)出版社,20035 李茂基.軋鋼機(jī)械M北京:冶金工業(yè)出版社,19986 濮良貴機(jī)械設(shè)計:高等教育出版社,2001.6(第七版)7 劉鴻文材料力學(xué) : 高等教育出版社,2004.1(第四版)8 劉建臣 AutoCAD2004中文版 :國防工業(yè)出版社,2004.19 鄒家祥軋鋼機(jī)械:冶金工業(yè)出版社,2000.2(第三版)10 王章忠機(jī)械工程材料:機(jī)械工業(yè)出版社,2006.1(第一版)11 李坤機(jī)械維護(hù)與安裝:化學(xué)工業(yè)出版社,2004.212 劉延俊液壓與氣壓傳動 :機(jī)械工業(yè)出版社,2007.2(第二版)13 王春行液壓控制系統(tǒng):機(jī)械工業(yè)出版社,2007.8(第一版)14 羅振才冶金機(jī)械設(shè)計方法:冶金工業(yè)出版社,1993.4重慶科技學(xué)院畢業(yè)設(shè)計(論文)任務(wù)書院 (系) 機(jī)械學(xué)院 專業(yè)班級 機(jī)械設(shè)計制造及其自動化 學(xué)生姓名 劉川 學(xué)號 指導(dǎo)教師 陳祥偉 職稱 高級工程師 題目:2090高精度棒材矯直機(jī)設(shè)計(任務(wù)起止日期 2008年2 月23 日至 2008年6月15 日)教 研 室 主 任 年 月 日院 長(系主任) 年 月 日設(shè)計(論文)的主要內(nèi)容: (一)設(shè)計參數(shù):1. 矯直棒材規(guī)格:20902. 矯直棒材材料:合結(jié)鋼、不銹鋼(s=1200N/mm2)3.棒材原始曲率:0.4%(mm/m)4.矯直后直度:0.05%(mm/m)5.棒材原始表面:Ra3.26.棒材矯直后表面:Ra0.87.最大矯直速度:330m/min8.最大矯直力:300KN9.采用液壓過載保護(hù)10.采用循環(huán)潤滑與循環(huán)冷卻11.自動上下料(二)整機(jī)設(shè)計、潤滑系統(tǒng)選型設(shè)計、整機(jī)設(shè)備安裝與維護(hù)方案制定設(shè)計(論文)任務(wù)要求:滾光矯直機(jī)力能參數(shù)計算與結(jié)構(gòu)設(shè)計、潤滑系統(tǒng)選型設(shè)計。具體要求如下:1.進(jìn)行相關(guān)資料查閱,完成文獻(xiàn)綜述,英文資料翻譯,完成開題報告2.進(jìn)行總體方案論證及選型,主要理論參數(shù)計算與優(yōu)化3.采用計算機(jī)繪圖完成總機(jī)裝配圖、輥系裝配圖4.完成15000字左右的設(shè)計說明書5.答辯主要參考文獻(xiàn)(由指導(dǎo)教師指定):1崔甫矯之技術(shù)與矯直原理:冶金工業(yè)出版社,2005年4月(第二版) 2 濮良貴機(jī)械設(shè)計:高等教育出版社,2001年6月(第七版)3 劉鴻文材料力學(xué) : 高等教育出版社,2004年1月(第四版)4 劉建臣 AutoCAD2004中文版 :國防工業(yè)出版社,2004年1月5 鄒家祥軋鋼機(jī)械:冶金工業(yè)出版社,2000年2月(第三版)6 王章忠機(jī)械工程材料:機(jī)械工業(yè)出版社,2006年1月(第一版)7 李坤機(jī)械維護(hù)與安裝:化學(xué)工業(yè)出版社,2004年2月8 劉延俊液壓與氣壓傳動 :機(jī)械工業(yè)出版社,2007年2月(第二版)9 王春行液壓控制系統(tǒng):機(jī)械工業(yè)出版社,2007年8月(第一版)10 羅振才冶金機(jī)械設(shè)計方法:冶金工業(yè)出版社,1993年4月11 唐金松簡明機(jī)械設(shè)計手冊:上??萍汲霭嫔?,1992年6月12 摩檫摩損與潤滑 :石油工業(yè)出版社13 石洪衛(wèi)冶金管理雜志 :冶金管理雜志出版社,2008年1月14 汪學(xué)瑤特殊鋼雜志:特殊鋼雜志出版社,2008年2月15 李茂基.軋鋼機(jī)械M北京:冶金工業(yè)出版社,1998年同組設(shè)計者及分工:無注:該任務(wù)書由指導(dǎo)教師填寫,在畢業(yè)設(shè)計開始前一周下達(dá)給學(xué)生,一式二份,專業(yè)教研室、每個學(xué)生各一份。其中教研室的一份待學(xué)生做完畢業(yè)設(shè)計(論文)后作為附件裝入學(xué)生畢業(yè)設(shè)計(論文)資料中。學(xué)生完成畢業(yè)設(shè)計(論文)工作進(jìn)度計劃表序號畢業(yè)設(shè)計(論文)工作任務(wù)工 作 進(jìn) 度 安 排 (周)12345678910111213141516171819201資料查閱,學(xué)習(xí)有關(guān)知識,完成文獻(xiàn)綜述報告2完成外文譯文、撰寫開題報告3進(jìn)行調(diào)研,開展設(shè)計方案論證4進(jìn)行設(shè)計理論參數(shù)計算與選擇5進(jìn)行結(jié)構(gòu)初步設(shè)計與主要參數(shù)驗(yàn)證6確定設(shè)計結(jié)構(gòu),繪制圖紙7整理設(shè)計資料,撰寫說明書8整理提交設(shè)計圖紙、設(shè)計說明書9準(zhǔn)備答辯10答辯說明:1.此表由指導(dǎo)教師填寫;2.此表每個畢業(yè)學(xué)生一份,作為畢業(yè)設(shè)計(論文)檢查工作進(jìn)度之依據(jù);3.進(jìn)度安排計劃請用藍(lán)或黑色橫條線在相應(yīng)位置標(biāo)出,進(jìn)度安排實(shí)施請用紅色橫條線在相應(yīng)位置標(biāo)出。畢業(yè)設(shè)計(論文)階段工作情況檢查表時間第一階段(完成開題報告時)第二階段第三階段(參加畢業(yè)答辯一周前)內(nèi)容組織紀(jì)律完成任務(wù)情況組織紀(jì)律完成任務(wù)情況組織紀(jì)律完成任務(wù)情況檢查情況教師簽字簽字 日期 年 月 日簽字 日期 年 月 日簽字 日期 年 月 日說明:1.此表每個畢業(yè)學(xué)生一份,由指導(dǎo)教師根據(jù)學(xué)生具體執(zhí)行情況如實(shí)填寫;2.對違紀(jì)和不能按時完成任務(wù)者,指導(dǎo)教師可根據(jù)情節(jié)輕重對該生提出警告或不能參加答辯的建議。重慶科技學(xué)院畢業(yè)設(shè)計(論文)題 目 20-90高精度棒材矯直機(jī)設(shè)計 姓 名_劉 川 _ 學(xué) 號_2004440118院(系)機(jī)械工程學(xué)院 專業(yè)班級 機(jī)械設(shè)計制造及其自動化本科2004級 指導(dǎo)教師_ 職 稱_高級工程師評 閱 人_ _ 職 稱_ 2008年6月10日注 意 事 項1. 設(shè)計(論文)的內(nèi)容包括:1) 封面(按教務(wù)處制定的標(biāo)準(zhǔn)封面格式制作)2) 題名頁3) 中文摘要(300字左右)、關(guān)鍵詞4) 外文摘要、關(guān)鍵詞 5) 目次頁(附件不統(tǒng)一編入)6) 論文主體部分:引言(或緒論)、正文、結(jié)論、參考文獻(xiàn)7) 附錄(對論文支持必要時)2. 論文字?jǐn)?shù)要求:設(shè)計(論文)字?jǐn)?shù)理工類不少于1.5萬字,文科類不少于1.2萬字。3. 附件包括:任務(wù)書、文獻(xiàn)綜述、開題報告、外文譯文、譯文原文(復(fù)印件)。4. 文字、圖表要求:1) 文字通順,語言流暢,書寫字跡工整,打印字體及大小符合要求,無錯別字,不準(zhǔn)請他人代寫。2) 工程設(shè)計類題目的圖紙,要求部分用尺規(guī)繪制,部分用計算機(jī)繪制,所有圖紙應(yīng)符合國家技術(shù)標(biāo)準(zhǔn)規(guī)范。圖表整潔,布局合理,文字注釋必須使用工程字書寫,不準(zhǔn)用徒手畫。3) 畢業(yè)論文須用A4單面打印,論文50頁以上的雙面打印。4) 圖表應(yīng)繪制于無格子的頁面上。5) 軟件工程類課題應(yīng)有程序清單,并提供電子文檔。5. 裝訂順序1) 設(shè)計(論文)2) 附件按照任務(wù)書、文獻(xiàn)綜述、開題報告、外文譯文、譯文原文(復(fù)印件)次序裝訂3) 教師指導(dǎo)畢業(yè)設(shè)計(論文)情況記錄表4) 其它學(xué)生畢業(yè)設(shè)計(論文)原創(chuàng)性聲明本人以信譽(yù)聲明:所呈交的畢業(yè)設(shè)計(論文)是在導(dǎo)師的指導(dǎo)下進(jìn)行的設(shè)計(研究)工作及取得的成果,設(shè)計(論文)中引用他(她)人的文獻(xiàn)、數(shù)據(jù)、圖件、資料均已明確標(biāo)注出,論文中的結(jié)論和結(jié)果為本人獨(dú)立完成,不包含他人成果及為獲得重慶科技學(xué)院或其它教育機(jī)構(gòu)的學(xué)位或證書而使用其材料。與我一同工作的同志對本設(shè)計(研究)所做的任何貢獻(xiàn)均已在論文中作了明確的說明并表示了謝意。畢業(yè)設(shè)計(論文)作者(簽字): 簽字日期 年 月 日重慶科技學(xué)院本科生畢業(yè)設(shè)計 目錄目 錄中文摘要I英文摘要II1 緒 論11.1設(shè)計課題背景11.2設(shè)計依據(jù)11.3矯直設(shè)備的發(fā)展概況11.4分類及工作原理31.4.1 壓力矯直機(jī)31.4.2輥式矯直機(jī)31.4.3 斜輥式矯直機(jī)31.4.4拉伸矯直機(jī)31.4.5拉伸彎曲矯直機(jī)42 鋼材矯直理論12.1“ 矯直”的定義12.2反彎矯直的基本原理13二輥滾光矯直機(jī)的工作原理43.1二輥滾光矯直機(jī)的簡介43.2二輥滾光矯直機(jī)的工作原理43.3設(shè)計二輥滾光矯直機(jī)所涉及到的主要參數(shù)103.4國內(nèi)外現(xiàn)在生產(chǎn)這種矯直機(jī)的廠家114二輥滾光矯直機(jī)力能參數(shù)計算124.1矯直力的計算124.1.1求導(dǎo)程t124.1.2求彈性極限彎矩Mmax134.1.3求傾角:134.1.4軸承承受力的總和144.2 二輥滾光矯直機(jī)功率計算144.2.1軸承的消耗功率144.2.2滑動摩擦的消耗功率144.2.3滾動摩擦的消耗功率144.2.4塑性彎曲變形的消耗功率154.2.5消耗總功率154.3電機(jī)驅(qū)動功率124.4關(guān)于機(jī)架、機(jī)座及軸承蓋的設(shè)計155二輥滾光矯直機(jī)輥系設(shè)計185.1矯直輥的組成185.2.矯直輥材料185.3矯直輥尺寸計算195.4矯直速度計算205.5矯直輥強(qiáng)度計算215.6軸承的壽命校核236二輥滾光矯直機(jī)傳動裝置的選擇及液壓過載保護(hù)256.1二輥滾光矯直機(jī)傳動裝置的選擇256.1.1矯直機(jī)主傳動裝置的組成256.1.2矯直機(jī)主傳動裝置類型256.1.3萬向連接軸256.1.4聯(lián)接軸的總體的配置及其平衡裝置266.1.5主減速機(jī)276.2二輥滾光矯直機(jī)的液壓過載保護(hù)裝置287二輥滾光矯直機(jī)的安裝與維護(hù)307.1二輥滾光矯直機(jī)的安裝307.1.1基礎(chǔ)307.1.2設(shè)置安裝基準(zhǔn)307.1.3設(shè)置墊板307.1.4矯直機(jī)的吊裝、找正、找平、找標(biāo)高317.1.5二次灌漿317.1.6試運(yùn)轉(zhuǎn)317.2二輥滾光矯直機(jī)的維護(hù)317.2.1二輥滾光矯直機(jī)的維護(hù)和修理制度317.2.2二輥滾光矯直機(jī)的潤滑328總結(jié)349致謝3510參考文獻(xiàn)36重慶科技學(xué)院本科生畢業(yè)設(shè)計 中文摘要摘 要隨著科技的進(jìn)步,人們對棒材的需求量越來越大、對其精度要求也越來越高,以前人們采用平行輥矯直機(jī)矯直管、棒等圓形斷面條材,圓材在矯直過程中容易產(chǎn)生自轉(zhuǎn)現(xiàn)象,并且只能矯直圓材垂直于輥軸的縱向剖面上的彎曲。在這種情況下斜二輥矯直機(jī)的問世解決了以前平行輥矯直機(jī)所解決不了的棒材、管材的矯直問題,在這種情況下,我們對二輥滾光矯直機(jī)進(jìn)行設(shè)計。本文重點(diǎn)對鋼材矯直工藝及工作原理,斜輥矯直機(jī)的工作原理、特點(diǎn)、結(jié)構(gòu)等進(jìn)行了介紹,同時對二輥棒材矯直機(jī)力能參數(shù)的計算進(jìn)行了分析,提出了本次設(shè)計二輥棒材矯直機(jī)的基本思路。矯直機(jī)的機(jī)架、機(jī)座、傳動等部分設(shè)計不屬于本次設(shè)計的重點(diǎn),所以在這里只是作了簡單的介紹,但是由于時間比較倉促,本文對矯直機(jī)的液壓壓下裝置、矯直機(jī)的安裝與維護(hù)沒有做出詳盡的介紹,限于本人的水平,文中有誤漏之出,還請批評指正。關(guān)鍵詞:棒材 矯直工藝 二輥棒材矯直機(jī) 矯直力能參數(shù)1重慶科技學(xué)院本科生畢業(yè)設(shè)計 AbstractABSTRACTWith the advancement of technology, peoples growing demand for the bar, its accuracy is also getting higher and higher, before people parallel roller leveler straightening tubes, rods and other circular cross-section of the build, round-wood in hand Direct the process of rotation is easy to produce, and only straightening roundwood roll axis perpendicular to the longitudinal section on the bend. In this case the ramp roll straightening machine resolved before the advent of parallel roll straightening machine can not be resolved by the bar, pipe straightening of the problem, in this case, we design roll on the roller-straightening machine.The steel straightening process and working principle, ramps roll straightening machine works, characteristics, such as the structure was introduced, while two of the roll bar straightening machine can be calculated parameters of an analysis of the proposed The design of the roll bar leveler of the basic ideas. Straightening machine rack, engine, transmission and other parts of the design are not the focus of this design, so here is a brief introduction, but because of the time hasty comparison, the paper leveler of the hydraulic pressure devices, Straightening machine installation and maintenance have not made detailed introduction, I am limited to the level of error in the text of a leak, also invited criticism correction.Key words: bars;Straightening process;the two roll bar straightening machine;straightening of the power parameters1 緒 論1.1設(shè)計課題背景長期以來,矯直機(jī)因彎曲由人工檢測,壓彎量人為設(shè)定不夠準(zhǔn)確,全過程都靠手工操作,效率低,矯直精度全憑操作者經(jīng)驗(yàn)來決定等缺點(diǎn),一直作為一種補(bǔ)充矯直設(shè)備來使用。所以矯直必須檢測工件的原始彎曲,測量彎曲量、確定最佳矯直點(diǎn)、設(shè)定壓彎量。由于缺少可靠的檢測手段和認(rèn)識上的一些人為因素,以前這些工作只能靠人工來完成。因此以前的矯直機(jī)有以下缺點(diǎn):彎曲人工檢測、壓彎量人工設(shè)定不夠準(zhǔn)確,效率低,矯直精度全憑操作者經(jīng)驗(yàn)來決定,降低了生產(chǎn)效率。而且現(xiàn)在人們對棒材的需求量越來越大、對其精度要求也越來越高,在情況下斜二輥矯直機(jī)的問世解決了以前平行輥矯直機(jī)所解決不了的棒材、管材的矯直精度問題,在這種情況下,我們對二輥滾光矯直機(jī)進(jìn)行設(shè)計。The company Severstal completed the successful introduction of new in-line plate-straightening machines (PSMs) on its 2800 and 5000 mills in August 2003 1, 2, 3. The main design features of the machines are as follows: each machine is equipped with hydraulic hold-down mechanisms (to improve the dynamics and accuracy of the machine adjustments and more reliably maintain a constant gap); the machines have mechanisms to individually adjust each work roller with the aid of hydraulic cylinders (this broadens the range of straightening regimes that can be realized by providing a measure of control over the change in the curvature of the plate); each work roller is provided with its own adjustable drive (to eliminate rigid kinematic constraints between the spindles); the system of rollers of the PSM is enclosed in cassettes (to facilitate repairs and reduce roller replacement costs); the PSM has a system that can be used to adjust the machine from a nine-roller straightening scheme to a five- roller scheme in which the distance between the rollers is doubled (this is done to widen the range of plate thick- nesses that the machine can accomodate). Thus, the new straightening machine is a sophisticated multi-function system of mechanisms that includes a wide range of hydraulically and electrically driven components controlled by digital and analog signals. The entire complex of PSM mechanisms can be divided into two functional groups: the main group, which includes the mechanisms that partici- pate directly in the straightening operation (the hold-down mechanisms, the mechanisms that individually adjust the rollers, the mechanisms that adjust the components for different straightening regimes, the mechanism that moves the top roller of the feeder, and the main drive); the auxiliary group (which includes the cassette replacement mechanism, the spindle-lock- ing mechanism, and the equipment that cools the system of rollers). Although the PSM has a large number of mechanisms, the use of modern hydraulic and electric drives has made it possible to almost completely automate the main and auxiliary operations performed on the PSM and the units that operate with it. Described below are the features and the automatic control systems for the most important mechanisms of the plate- straightening machine. The operating regimes of those mechanisms are also discussed. The hydraulic hold-down mechanisms (HHMs) of the sheet-straightening machine function in two main regimes: the adjustment regime; the regime in which the specified positions are maintained. There are certain requirements for the control system and certain efficiency criteria for each regime. In the adjustment regime, the control system for the hydraulic hold-down mechanisms must do the following: synchronize the movements of the hydraulic cylinders and keep the angular deeflection within prescribed limits; maximize speed in adjusting the machine for a new plate size; maintain a high degree of accuracy in positioning the mechanisms; Metallurgist, Vol. 48, Nos. 78, 2004 AUTOMATING THE CONTROL OF MODERN EQUIPMENT FOR STRAIGHTENING FLAT-ROLLED PRODUCTS Yu. N. Belobrov, V. G. Smirnov, A. I. Titarenko, V. A. Perekhodchenko, and I. L. Sinelnikov UDC 621.982 Novokramatorsk Machine Plant AO. Translated from Metallurg, No. 8, pp. 5156, August, 2004. 406 The control system has the following requirements when operating in the maintenance regime: stabilize the coordinates of the top cassette and the top roller of the feeder with a high degree of accuracy; minimize the time needed to return the equipment to the prescribed coordinates when deviations occur (such as due to the force exerted by a plate being straightened). Need for synchronization. Experience in operating the plate-straightening machine in plate shop No. 3 at Severstal has shown that the most problematic factor in adjusting the machine is the nonuniformity of the forces applied to the hydraulic cylinders. This nonuniformity is due to the asymmetric distribution of the masses of the moving parts of the PSM (in par- ticular, the effect of the weight of the spindle assembly). Displacement of the “hydraulic zero point” relative to the “electri- cal zero point” in the servo valves is also a contributing factor. * The latter reason is more significant, the smaller the volume of the hydraulic cylinder. Thus, the HHM of the top roller of the feeder is the most sensitive to drift of the zero point. There are also other factors that affect the dynamism, simultaneousness, and synchronism of the operation of the hold-down mechanisms: differentiation of the frictional forces on parts of the hydraulic cylinders due to different combinations of devia- tions in the dimensions of the mated parts, despite the narrow tolerances; differences in the “springing” characteristics and the indices characterizing the inertia of the hydraulic supply chan- nels (due to differences in the lengths of the pipes leading from the servo valves to the hydraulic cylinders). Thus, since the PSM is not equipped with devices to mechanically synchronize the operation of the cylinders, the transmission of signals of the same amplitude to the inputs of the servo valves inevitably results in a speed difference that can seriously damage the mechanisms. To minimize and eliminate the effects of the above-mentioned factors, we developed an algorithm for electrical syn- chronization of the hold-down mechanisms. The HHM of the top cassette, composed of four hold-down cylinders and four balancing cylinders, is designed to ensure mobile adjustment of the machine to set the required size of straightening gap (in accordance with the thickness of the plate) and maintain that gap with a specified accuracy in the presence and absence of a load on the housings from the straightening force. The hydraulic system of the hold-down mechanism is designed in such a way that only one chamber of the hydraulic cylinders is used as the working chamber. The second chamber is always connected to the discharge channel. The top cassette is lowered when the balancing forces are overcome by the hold-down cylinders. The cassette is raised only by the action of the balancing cylinders. This arrangement has made it possible to eliminate gaps in the positioning of the equipment. 407 Fig. 1. Block diagram of the control system of the hydraulic cylinder. * The hydraulic zero point is the position that the slide valve occupies when it covers the delivery and discharge mains. The electrical zero point is the control signal that should move the valve to the hydraulic zero point. These points should ide- ally coincide, but in actual servo valves with zero overlap there is always a certain amount of displacement that results in leakage of the hydraulic fluid. The HHM of the top roller of the feeder consists of two hydraulic cylinders. Hydraulic fluid is fed into the plunger chamber when the roller is to be lowered and is fed into the rod chamber when it is to be raised. Control Principles. Individual circuits have been provided (Fig. 1) to control the hydraulic cylinders of the hold- down mechanisms. The control signal (X ctl ) sent to the input of the servo valve is formed by a proportional-integral (PI) con- troller (to improve the sensitivity of the system, we chose to use valves with “zero” overlap). The signal sent to the input of the controller (the error signal X err ) is formed as the difference between the control-point signal for position (X cpt ) and the feedback signal (X f.b ). The latter signal is received from the linear displacement gage (G) of the given hydraulic cylinder. The gages of the HHM for the top cassette are built into the balancing hydraulic cylinders (HCs). The cylinders are installed in such a way that their movements can be considered to be equal to the displacements of the corresponding cylin- der rods, with allowance for certain coefficients. The gages in the HHM for the top roller of the feeder are incorporated directly into the hold-down cylinders. The integral part of the controller is activated only during the final adjustment stage and during stabilization of the prescribed coordinate. When the displacements exceed a certain threshold value, the functions of the PI controller are taken over by a proportional (P) controller with the transfer function W(s) = k. Thus, X ctl (t) = kX err (t). When there are significant differences between the displacements of the working rollers, the difference (error) between the control point and the feedback signal from the linear displacement gage reaches values great enough so that the output signal which controls the operation of the servo valve reaches the saturation zone. In this case, further regu- lation of the displacement rate and, thus synchronization of the movements of the cylinders becomes impossible as long as the error exceeds the value at which X ctl is greater than the boundary value for the saturation zone (X sat ). The limit- ing error the largest error for which X ctl does not reach saturation is inversely proportional to the gain of the con- troller k: X err X sat /k. Solving the given problem by decreasing k leads to a loss of speed in the adjustment of the PSM and a decrease in control accuracy during the straightening operation. Thus, to keep the control signal from reaching the saturation zone when there are substantial displacements, the system was designed so that the input of the controller is fed not the actual required value (X rq ) but an increment (D X) of a magnitude such that the condition kD X X sat is satisfied. The control point is increased by the amount D X after the position of the cylinder has been changed by the amount corresponding to the incre- ment having the largest lag relative to the cylinders direction of motion. The adjustment of the control point is continued until the difference between the required value and the actual position of the mechanism becomes less than the increment: X rq X f.b D X. Then the input of the controller is fed the value X cpt , which is equal to the required adjustment: X cpt = X rq . The adjustment is thus completed. Use of the principle of a stepped increase in the control point makes it possible synchronize the movements of the cylinders and set the control point with a high degree of accuracy for almost any ideal repetition factor. Mechanisms for Individual Adjustment of the Working Rollers. The plate-straightening machine is designed so that each working roller can be moved vertically, which is done by means of a hydraulic cylinder acting in concert with a V-belt drive. The cylinders are supplied with power from servo valves operated with proportional control. A linear displacement gage is built into each cylinder to obtain a feedback signal on the position of the roller. Since these gages are actually transmiting information on the position of the cylinder rods rather than the working rollers themselves, the following conversion is performed to obtain the rollers coordinates: X rol = k red X f.b , where k red is the gear ratio of the drive; X f.b is the position of the cylinder rod measured by the linear displacement trans- ducers. Thus, a position feedback circuit is provided to control the position of each working roller. Figure 1 presents a dia- gram of one of the circuits. The control signals are generated by means of the PI controllere, which has made it possible to achieve a high degree of accuracy in adjusting the system without sacrificing speed. 408 The individual drive of the rollers. The above-described design is based on the use of individual ac drives with motors of different powers fed from frequency converters. Each individual drive offers the following advantages over a group drive: greater reliability thanks to the absence of additional loads on the components of the mechanisms due to differ- ences between the linear velocities of the working rollers and the speed of the plate; the possibility that the machine could continue to operate if one or even several drives malfunction; in this case, the corresponding rollers would be removed from the straightening zone; the possibility that the linear velocities of the rollers could be individually corrected in accordance with the actual speed of the plate; such a correction could be made either as a preliminary measure (on the basis of measured and calculated values) or during the straightening operation (on the basis of the data obtained from the frequency con- verters, which employ artificial intelligence). The main drive of the straightening machine rotates nine straightening rollers and two housing rollers. This drive must be highly reliable in operation, since the fact that the PSM is installed in the mill line means that sizable production losses can be incurred if the drive fails to work properly even for a short period of time. The requirements that must be satisfied by the drive are determined by the operational and design features of the machine as a whole: the plate being straightened must create a rigid kinematic coupling between the straightening rollers, the rollers of the housing, and the adjacent sections of the roller conveyors; the plate should undergo elongation during the straightening operation as a result of plastic deformation, with the increments in length being different on each working roller due to the differentiation of the bending radii; this sit- uation leads to a nonuniform increase in the speed of the plate as it moves toward the end of the PSM; it must be possible to use working rollers of different diameters (this being done, for example, due to nonuniform wear or regrinding); the loads on the rollers should be differentiated in accordance with the chosen straightening regime; reverse straightening should be possible. In light of the above factors and the actual operating regimes of the plate-straightening machine being discussed here, the following requirements can be established for the electric drive: regulation of speed within broad limits, including startup of the motors under load; operation in the reverse regime; a rigid characteristic w = (M); high degree of accuracy in maintaining the prescribed speed; fully synchronous operation. The element base. The drive of the rollers was built with the use of asynchronous three-phase motors having a short- circuit rotor. The motors were designed by the German company VEM. They can continue to function under severe over- loads and are reliable in operation. The motors are controlled by SIMOVERT frequency converters made by the German firm Siemens. Their modular design facilitates maintenance and repair, and the presence of a built-in microprocessor block makes it possible to execute most of the functions involved in controlling the operation of the drive (maintain the prescribed speed with a high degree of stability, recalculate the frequency of rotation in accordance with the actual diameters of the rollers, diagnose the condition of the drive, control the drives operation, and exchange information on the PROFIBUS network). Motors of different powers are used in the system because of the differentiated distribution of the moments between the working rollers. Using different motors has made it possible to significantly reduce the cost of the electrical equipment and improve the performance characteristics of the machine as a whole. The machine has three main operating regimes: the working regime (semi-automatic and automatic), the transport regime, and the cassette replacement regime. Figure 2 shows a block diagram of the operations connected with realization of the working regime. In the semi- automatic variant of this regime, the operator controls the PSM from a control panel. In this case, the operator can do the following: choose the straightening regime from a database; correct the chosen regime; adjust the regime manually, which 409 requires that the operator indicate the desired position of the bottom cassette (for five- or nine-roll straightening); adjust the gap between the top and bottom cassettes; set the coordinates for individual adjustment of the working rollers; choose the straightening speed and direction; generate a command to begin adjusting the machine to the specified regime. The machine is adjusted to the chosen regime automatically. After the adjustment is completed, a signal is sent to the control panel indicating that the coordinates of the mechanisms have been changed and that the rollers have reached their prescribed working speeds. In the automatic variant of the working regime, the plate-straigthening machine is adjusted on the basis of data sent through a data network from a higher-level system. These data include the following information: the thickness of the plate being straightened; the group of steels (information on the properties of the material); the temperature of the plate at the inlet to the PSM. The PSM is adjusted in several stages: preliminary adjustment based on the plate thickness and steel group, for cold-rolled plates (t = 20C); further adjustment on the basis of data obtained from a pyrometer installed roughly 50 m from the PSM; final adjustment on the basis of data obtained from a pyrometer installed at the entrance to the machine. In the automatic variant, control over the roller conveyors adjacent to the machine is switched over to the control system of the PSM as the next plate approaches the machine. In this case, the plate cannot enter the working zone of the machine until the adjustment is completed. If it is necessary to pass a plate through the machine without straightening it, the machine is changed over to the transport regime. In this case, the top crossarm and the cassette are elevated a prescribed amount and the speed of the rollers is changed so that it is equal to the speed of the adjacent roller conveyors. The cassette replacement regime is used in the event of breakage of a roller or when it is necessary to regrind the working and backup rollers. In this case, the operator can control the operation of the auxiliary mechanisms: the spindle- locking mechanism, the roll-out cart, the mechanism that locks the bottom cassette and the cart in position, and the hydraulic cylinder that moves the cart. The mechanisms are fixed in position by means of noncontact transducers. PSM Control System. Control of the plate-straightening machine required the development of a powerful, high- capacity system that could provide the desired control accuracy in combination with rapid operation. 410 Working regime Semi-automatic Automatic Straightening regime Adjustment regime Straightening regime Adjustment regime Non-reversing straightening Reversing straightening Five-roll regime Nine-roll regime Five-roll regime Nine-roll regime Five-roll regime Nine-roll regime Fig. 2. Block diagram of the working regime of the PSM. The control system that was created is divided into two levels: the base level, and an upper level. The diagnostic system was created as a separate system. A second controller was also provided, to control the pump station of the PSM. The base level of the control system employs a SIMATIC S7 industrial programmable controller, while the upper level and the diagnostic system were built on the basis of standard computers. The computer used for the upper-level system also serves as the control panel for the PSM. The different elements of the control system are linked by two loops of a PROFIBUS network (Fig. 3). The first loop functions as the communications link between the controller, the upper-level computer, the diagnostics station, and the pump-station controller. The second loop links the PSM controller with the functional elements of the system (the frequen- cy converters, linear displacement gages, and remote input/output module). The functions of the control system were divided between the base level and the upper level on the basis of the fol- lowing pr
收藏