自動化立體倉庫堆垛起重機機械設計【含5張CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預覽哦。下載后都有,請放心下載,文件全都包含在內,【有疑問咨詢QQ:1064457796 或 1304139763】=喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預覽哦。下載后都有,請放心下載,文件全都包含在內,【有疑問咨詢QQ:1064457796 或 1304139763】=
編號無錫太湖學院畢業(yè)設計(論文)相關資料題目: FMS自動化立體倉庫 堆垛起重機機械結構設計 信機 系 機械工程及自動化專業(yè)學 號: 09230102 學生姓名: 趙 磊 指導教師: 尤麗華 (職稱:副教授 ) 2013年5月25日目 錄一、畢業(yè)設計(論文)開題報告二、畢業(yè)設計(論文)外文資料翻譯及原文三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”四、實習鑒定表無錫太湖學院畢業(yè)設計(論文)開題報告題目: FMS自動化立體倉庫 堆垛起重機機械結構設計 信機 系 數(shù) 控 專業(yè)學 號: 00923102 學生姓名: 趙 磊 指導教師: 尤麗華 (職稱:教授 ) 2012年11月28日 課題來源本課題來源于工程生產實際,應教學要求,使我們在學習期間接觸到一些先進的技術裝備和控制技術等重要知識,配合有關課程開設“柔性制造系統(tǒng)綜合實驗”的需求,培養(yǎng)獨立進行科學研究、綜合分析思考以及實際動手的能力,此畢業(yè)設計由此設立。科學依據(jù)目前自動化倉庫在發(fā)達國家已相當普遍,日本是自動化倉庫發(fā)展最快,建造數(shù)量最多的國家,此外美國、德國、瑞士、意大利、英國、和法國等國家也建造了許多自動化倉庫,發(fā)展至今,自動化倉庫在設計、制造自動化控制盒計算機管理方面的技術也日趨成熟。50年代初,美國美國出現(xiàn)了采用橋式堆垛起重機的立體倉庫。60年代初,出現(xiàn)了司機操作的香道式堆垛起重機立體倉庫。1963年美國率先在立體倉庫中采用計算機控制技術,建立了世界上第一座計算機控制的立體倉庫。進入80年代,我國對老式倉庫進行技術改造,開始采用自動化立體倉庫。1980年由北京機械工業(yè)自動化研究所等單位研制建成我國第一座自動化立體倉庫,在北京汽車制造廠投產。據(jù)不完全統(tǒng)計,目前我國已建成立體倉庫已有300座左右,其中全自動的立體倉庫有50多座,其中高度在12米以上的大型立體倉庫有8座,主要集中在傳統(tǒng)優(yōu)勢行業(yè)。在此基礎上我國對倉庫的研究也向著智能化的方向發(fā)展,但是目前還處于自動化倉儲的推廣和應用階段。研究內容 1.完成FMS自動化立體倉庫堆垛起重機機械結構設計的總體設計; 2.完成機架、行走機構、提升機構和載貨臺、貨叉等關鍵部件設計; 3.繪制相應的二維總裝圖及主要零部件圖紙; 4.設計工作量要求:至少完成A0圖紙2張和一份40頁以上的畢業(yè)論文; 5.查閱相關外文資料并完成不少于8000字符的外文資料翻譯; 6.完成一份畢業(yè)設計實習報告。擬采取的研究方法、技術路線、實驗方案及可行性分析本文從實際問題出發(fā),以現(xiàn)有設備為依托,先確定出堆垛機的總體結構及各部分的結構草圖,然后運用理論力學、材料力學、機械設計、制造技術等專業(yè)知識,并查閱相關設計手冊,對其機械部分進行了詳細的設計計算,包括:機架、行走機構、提升機構、載貨臺和貨叉伸縮機構等。設計過程中,以實現(xiàn)堆垛機的機械性能為目的,在滿足其強度、剛度、運行穩(wěn)定性等要求的前提下,綜合考慮結構的合理性和所選材料的經濟性,力求達到高質量、低成本??尚行苑治觯河纱丝梢?,該設計方案切實可行。研究計劃及預期成果研究計劃:大致分為如下幾個階段。第一階段,熟悉老師提供的設計資料,設計參數(shù)等,仔細閱讀任務書,理清設計思路,搜集資料了解研究目標,構思設計方案。第二階段,進行方案實施,根據(jù)設計參數(shù)進行計算,按設計要求進行設計使之滿足生產實際,完成設計。第三階段,制定檢測方案及檢測方法從而進行校核,改善不滿足要求的設計,最后完成圖紙。預期成果: 巷道堆垛起重機滿足所給自動化立體倉庫中各項要求,如:在規(guī)定貨架上自由提取,存放貨物以及完成與輸送系統(tǒng)的配合,速度控制嚴格滿足穩(wěn)定性的要求等。實現(xiàn)最優(yōu)化設計。特色或創(chuàng)新之處國內外其它行業(yè)采用自動化倉庫的情況已經充分證明,使用自動化立體倉庫能夠產生巨大的社會效益和經濟效益。這些效益主要表現(xiàn)在以下幾個方面: 1.搞層貨架存儲 由于使用高層貨架,存儲區(qū)可以大幅度地向空間發(fā)展,充分利用倉庫地面和空間,因此節(jié)省了庫存占地面積,提高了空間利用率。 2.自動存取 自動化立體倉庫使用機械和自動化設備,運行和處理速度快,提高了作業(yè)效率。 3.計算機控制與管理 計算機能夠準確無誤地對倉庫的各種信息進行存儲和管理,降低了操作人員的勞動強度,從而提高倉庫的管理水平。 4.作業(yè)效率明顯提高 能充分保證“先進先出”的合理作業(yè)原則。由于計算機管理、自動作業(yè),可以方便地實施貨位和賬目的科學管理,改善庫存結構,避免盲目壓貨,并改善勞動環(huán)境。 5.節(jié)約費用 隨著經濟的高速的發(fā)展,我國有關行業(yè)開始重視立體庫的研究,對于促進傳統(tǒng)觀念的轉變、提高現(xiàn)代化物流意識,形成新型的商品流通產業(yè)等方面均產生了強勁的推動作用。已具備的條件和尚需解決的問題已具備的條件:設計過程中所需要的幾種軟件、相關搜集資料的網站。尚需解決的問題:相關文獻資料的缺乏,對一些結構設計部分的具體設計指導,以及三維軟件的高級運用技巧。指導教師意見指導教師(簽名): 年 月 日系主任(簽名): 年 月 日英文原文:Realization of Neural Network Inverse System with PLC in Variable Frequency Speed-Regulating System Abstract. The variable frequency speed-regulating system which consists of an induction motor and a general inverter, and controlled by PLC is widely used in industrial field. .However, for the multivariable, nonlinear and strongly coupled induction motor, the control performance is not good enough to meet the needs of speed-regulating. The mathematic model of the variable frequency speed-regulating system in vector control mode is presented and its reversibility has been proved. By constructing a neural network inverse system and combining it with the variable frequency speed-regulating system, a pseudo-linear system is completed, and then a linear close-loop is designed to get high performance. Using PLC, a neural network inverse system can be realized in system. The results of experiments have shown that the performances of variable frequency speed-regulating system can be improved greatly and the practicability of neural network inverse control was testified.1.Introduction In recent years, with power electronic technology, microelectronic technology and modern control theory infiltrating into AC electric driving system, inverters have been widely used in speed-regulating of AC motor. The variable frequency speed-regulating system which consists of an induction motor and a general inverter is used to take the place of DC speed-regulating system. Because of terrible environment and severe disturbance in industrial field, the choice of controller is an important problem. In reference 123, Neural network inverse control was realized by using industrial control computer and several data acquisition cards. The advantages of industrial control computer are high computation speed, great memory capacity and good compatibility with other software etc. But industrial control computer also has some disadvantages in industrial application such as instability and fallibility and worse communication ability. PLC control system is special designed for industrial environment application, and its stability and reliability are good. PLC control system can be easily integrated into field bus control system with the high ability of communication configuration, so it is wildly used in recent years, and deeply welcomed. Since the system composed of normal inverter and induction motor is a complicated nonlinear system, traditional PID control strategy could not meet the requirement for further control. Therefore, how to enhance control performance of this system is very urgent.The neural network inverse system 45 is a novel control method in recent years. The basic idea is that: for a given system, an inverse system of the original system is created by a dynamic neural network, and the combination system of inverse and object is transformed into a kind of decoupling standardized system with linear relationship. Subsequently, a linear close-loop regulator can be designed to achieve high control performance. The advantage of this method is easily to be realized in engineering. The linearization and decoupling control of normal system can realize using this method.Combining the neural network inverse into PLC can easily make up the insufficiency of solving the problems of nonlinear and coupling in PLC control system. This combination can promote the application of neural network inverse into practice to achieve its full economic .In this paper, firstly the neural network inverse system method is introduced, and mathematic model of the variable frequency speed-regulating system in vector control mode is presented. Then a reversible analysis of the system is performed, and the methods and steps are given in constructing NN-inverse system with PLC control system. Finally, the method is verified in traditional PI control and NN-inverse control.2.Neural Network Inverse System Control MethodThe basic idea of inverse control method 6 is that: for a given system, an-th integral inverse system of the original system is created by feedback method, and combining the inverse system with original system, a kind of decoupling standardized system with linear relationship is obtained, which is named as a pseudo linear system as shown in Fig.1. Subsequently, a linear close-loop regulator will be designed to achieve high control performance.Inverse system control method with the features of direct, simple and easy to understand does not like differential geometry method 7, which is discusses the problems in geometry domain. The main problem is the acquisition of the inverse model in the applications. Since non-linear system is a complex system, and desired strict inverse is very difficult toobtain, even impossible. The engineering application of inverse system control dont meet the expectations. As neural network has non-linear approximate ability, especially for nonlinear the powerful tool to solve the problem.a th NN inverse system integrated inverse system with non-linear ability of the neural network can avoid the troubles of inverse system method. Then it is possible to apply inverse control method to a complicated non-linear system. a th NN inverse system method needs less system information such as the relative order of system, and it is easy to obtain the inverse model by neural network training. Cascading the NN inverse system with the original system, a pseudo-linear system is completed. Subsequently, a linear close-loop regulator will be designed.3. Mathematic Model of Induction Motor Variable FrequencySpeed-Regulating System and Its ReversibilityInduction motor variable frequency speed-regulating system supplied by the inverter of tracking current SPWM can be expressed by 5th order nonlinear model in d-q two-phase rotating coordinate. The model was simplified as a 3-order nonlinear model. If the delay of inverter is neglected, the model is expressed as follows: (1)where denotes synchronous angle frequency, and is rotate speed. are stators current, and are rotors flux linkage in(d,q)axis. is number of poles. is mutual inductance, and is rotors inductance. J is moment of inertia.is rotors time constant, and is load torque.In vector mode, thenSubstituted it into formula (1), then (2)Taking reversibility analyses of forum (2), thenThe state variables are chosen as followsInput variables areTaking the derivative on output in formula(4), then (5) (6)Then the Jacobi matrix is Realization of Neural Network Inverse System with PLC (7) (8)As so and system is reversible. Relative-order of system is When the inverter is running in vector mode, the variability of flux linkage can be neglected (considering the flux linkage to be invariableness and equal to the rating). The original system was simplified as an input and an output system concluded by forum (2).According to implicit function ontology theorem, inverse system of formula (3)can be expressed as (9)When the inverse system is connected to the original system in series, the pseudo linear compound system can be built as the type of 4. Realization Steps of Neural Network Inverse System4.1 Acquisition of the Input and Output Training Samples Training samples are extremely important in the reconstruction of neural network inverse system. It is not only need to obtain the dynamic data of the original system, but also need to obtain the static date. Reference signal should include all the work region of original system, which can be ensure the approximate ability. Firstly the step of actuating signal is given corresponding every 10 HZ form 0HZ to 50HZ, and the responses of open loop are obtain. Secondly a random tangle signal is input, which is a random signal cascading on the step of actuating signal every 10 seconds, and the close loop responses is obtained. Based on these inputs, 1600 groups training samples are gotten.4.2 The Construction of Neural Network A static neural network and a dynamic neural network composed of integral is used to construct the inverse system. The structure of static neural network is 2 neurons in input layer, 3 neurons in output layer, and 12 neurons in hidden layer. The excitation function of hidden neuron is monotonic smooth hyperbolic tangent function. The output layer is composed of neuron with linear threshold excitation function. The training datum are the corresponding speed of open-loop, close-loop, first orderderivative of these speed, and setting reference speed. After 50 times training, the training error of neural network achieves to 0.001. The weight and threshold of the neural network are saved. The inverse model of original system is obtained.5 .Experiments and Results5.1 Hardware of the System The hardware of the experiment system is shown in Fig 5. The hardware system includes upper computer installed with Supervisory & Control configuration software WinCC6.0 8, and S7-300 PLC of SIEMENS, inverter, induction motor and photoelectric coder.PLC controller chooses S7-315-2DP, which has a PROFIBUS-DP interface and a MPI is connected with S7-300 by CP5611 using MPI protocol.The type of inverter is MMV of SIEMENS. It can communicate with SIEMENS PLC by inverter in this system.5.2 Software Program5.2.1 Communication IntroductionMPI (Mu Point Interface) is a simple and inexpensive communication strategy using in slowly and non-large data transforming field. The data transforming between and PLC is not large, chosen. The MMV inverter is connected to the PROFIBUS network as a slave station, which is mounted with CB15 PROFIBUS module. PPO1 or PPO3 data type can be chosen. It permits to send the control data directly to the inverter addresses, or to use the system function blocks of SFC14/15.OPC can efficiently provide data integral and intercommunication. Different type servers and clients can access data sources of each other. Comparing with the traditional mode of software and hardware development, equipment manufacturers only need to develop one driver. This can short the development cycle, save manpower resources, and simplify the structure of the entire control system. Variety data of the system is needed in the neural network training of , which can not obtain by reading from PLC or directly. So OPC technology can be used l to obtain the needed data between . Setting as OPC DA server, an OPC client is constructed in Excel by VBA. System real time data is and to Excel by, and then the data in Excel is transform to for offline training to get the inverse system of original system.5.2.2 Control Program Used STL to program the communication and data acquisition and control algorithm subroutine in STEP7 V5.2, velocity sample subroutine and storage subroutine are programmed in regularly interrupt A, and the interrupt cycle chooses 100ms. In order to minimum the cycle time of A to prevent the run time of A exceeding 100ms and system error, the control procedure and procedure B. In neural network algorithm normalized the training samples is need to speed up the rate of n input and output data before the final training. 5.3 Experiment ResultsWhen speed reference is square wave signal with 100 seconds cycle, where the inverter is tracking performance of neural network control is better than traditional PI control. When speed reference keeps in constant, and the load is reduced to no load at 80 seconds, and increased to full load at 120 seconds, the response curves of speed with traditional PI control and neural network inverse control are shown in Fig. 11 and 12 respectively. It is clearly that the performance of resisting the load disturbing with neural network inverse control is better than the traditional PI control. (Speed response in PI control) (Speed response in neural network inverse control)6. Conclusion In order to improve the control performance of PLC Variable Frequency Speed-regulating System, neural network inverse system is used. A mathematic model of variable frequency speed-regulating system was given, and its reversibility was testified. The inverse system and original system is compound to construct the pseudo linear system and linear control method is design to control. With experiment, neural network inverse system with PLC has its effectiveness and its feasibility in industry application.中文譯文PLC變頻調速的網絡反饋系統(tǒng)的實現(xiàn) 摘要。變頻調速系統(tǒng),包括一個異步電動機和通用逆變器、且PLC控制被廣泛地應用于工業(yè)領域。然而,對多變量、非線性和強耦合的異步電機的控制性能卻不足,不能很好地滿足客戶的調速要求。該數(shù)學模型的變頻調速系統(tǒng)提出了矢量控制方式,其可逆轉性得到證實。通過構建一種基于神經網絡的逆系統(tǒng),并結合變頻調速系統(tǒng),pseudo-linear系統(tǒng)被完成了,并且為了得到性能優(yōu)良的系統(tǒng)采用了一個線性閉環(huán)調節(jié)器。采用PLC、神經網絡逆系統(tǒng)在實際系統(tǒng)可以實現(xiàn)。實驗結果表明變頻調速系統(tǒng)的性能得到了很大的提高,并且神經網絡反饋控制的可行性得到了驗證。1. 導論近年來,隨著電力電子技術、微電子技術和現(xiàn)代控制理論,逐漸涉及到交流電機系統(tǒng),這些技術已經廣泛應用于變頻器調速的AC馬達。變頻調速系統(tǒng),包括一個異步電動機和通用逆變器,用來代替直流調速系統(tǒng)。由于在工業(yè)領域中的糟糕的環(huán)境和嚴重的干擾,選擇控制器是一個十分重要的問題。在文獻123,介紹了利用工業(yè)控制計算機和數(shù)據(jù)采集卡實現(xiàn)了神經網絡反饋控制。工業(yè)控制計算機的優(yōu)勢有較高的計算速度,龐大的記憶能力以及與其他軟件良好的兼容性等。但是工業(yè)控制計算機在工業(yè)應用上也有一些不足,比如運行不穩(wěn)定,不可靠及更惡劣的通信能力。可編程序控制器(PLC)控制系統(tǒng)是專為工業(yè)環(huán)境中的應用而設計的,它的穩(wěn)定性和可靠性好。PLC控制系統(tǒng),可以很容易地集成到現(xiàn)場總線控制系統(tǒng)并得到高性能的通信結構,所以它在近年來被廣泛地使用,并且深受歡迎。該系統(tǒng)由普通的逆變器和異步電機組成,是一種復雜的非線性系統(tǒng),傳統(tǒng)的PID控制策略,并不能滿足要求和進一步控制。因此,如何加強系統(tǒng)的控制性能是非常迫切的事情。神經網絡逆系統(tǒng)45, 在未來幾年里將是一種新型的控制方法。其基本的想法是:對于一個給定的系統(tǒng),原系統(tǒng)的逆系統(tǒng)是由一個動態(tài)神經網絡引起的,對象信號和反饋信號的組合系統(tǒng)被轉化成一種線性關系的解耦標準系統(tǒng)。隨后,一個線性閉環(huán)調節(jié)器設計可以達到較高的控制性能。該方法的優(yōu)點是在工程上很容易實現(xiàn)。在線性化及其解耦控制正常的非線性系統(tǒng)能實現(xiàn)采用這種方法。把神經網絡反饋結合到可編程序控制器(PLC)上就可以很容易地彌補不足的問題,解決在PLC控制系統(tǒng)上的非線性耦合。這個組合可以促進神經網絡反饋付諸實踐,來實現(xiàn)其全部的經濟效益和社會效益。在這篇文章中,首先對神經網絡反饋方法進行了介紹,并且描述了采用矢量控制的變頻調速系統(tǒng)的數(shù)學模型。然后是對反饋系統(tǒng)進行分析的的介紹,并給出了關于PLC控制系統(tǒng)中構造NN-反饋系統(tǒng)的方法和步驟。最后,該方法在實驗中被驗證,并將傳統(tǒng)的PI控制和NN-反饋控制進行了對比。2. 神經反饋網絡控制方法基本的反饋控制方法6就是:對于一個給定的系統(tǒng)、一種-th由反饋方法建立的完整的反饋系統(tǒng),并結合反饋系統(tǒng)與原系統(tǒng)的特點,提出了一種解耦的線性關系,以標準化體系,并命名為偽線性系統(tǒng)。隨后,一個線性閉環(huán)調節(jié)器運行并將達到較高的控制性能。當在“幾何領域”討論這些問題時,反饋系統(tǒng)控制方法并不像微分幾何方法,其特點是直接,簡單,易于理解。主要的問題是怎樣在應用軟件中獲得反饋模型。由于非線性系統(tǒng)是一個復雜的系統(tǒng),所以很難要求嚴格解析反饋信號,這甚至是不可能的。反饋系統(tǒng)控制在工程應用中不能達到期望值。作為神經網絡非線性逼近能力,尤其是對于非線性的復雜系統(tǒng),它會是來解決問題的強大工具。反饋系統(tǒng)集成了具有非線性逼近能力的反饋系統(tǒng),其中具有非線性逼近能力的反饋系統(tǒng)能夠避免使用反饋方法帶來的麻煩。這樣就可能,運用反饋控制方法去控制一個復雜的非線性系統(tǒng)。a th NN 反饋系統(tǒng)的控制方法只需要較少的系統(tǒng)信息,比如與系統(tǒng)相關的命令,并且容易獲得運行網絡的反饋模型。原系統(tǒng)的層疊式的 NN反饋系統(tǒng),會形成一個偽線性系統(tǒng)。然后,一個線性閉環(huán)調節(jié)校準器將工作。3. 異步電機變頻調速系統(tǒng)的數(shù)學模型和它的反饋性能異步電機變頻調速系統(tǒng)提供的跟蹤電流正弦脈寬調制逆變器可以表示為非線性模型在兩相循環(huán)的協(xié)調。該模型簡化為一個3-order非線性模型。如果忽略逆變器的延遲,該模型表述如下: (1) (表示同步角頻率;表示轉速;表示定子的電流;表示轉子在(qd)軸線上的不穩(wěn)定部分;表示點的數(shù)量;表示互感系數(shù);表示慣性轉矩;表示轉子的時間常數(shù);表示負載轉矩。)用矢量模式,得代進公式(1),得 (2)可逆轉性分析(2),得 (3) (4)可供選擇的狀態(tài)變量如下輸入變量由公式(4)得出結果,得 (5) (6)然后雅可比矩陣 (7) (8)作為 所以并且系統(tǒng)是可逆的。相關的系統(tǒng)是當變頻器運行模式的變化,在矢量磁鏈的可以忽略的磁鏈(考慮到是恒定,等于等級)。原系統(tǒng)簡化為一個輸入和輸出系統(tǒng)訂立的(2)。根據(jù)隱函數(shù)定理,公式(3)的反饋系統(tǒng)可以表達為: (9)當反饋系統(tǒng)連續(xù)連接到原系統(tǒng)時,偽線性復合系統(tǒng)形成類型。4. 網絡反饋系統(tǒng)的實現(xiàn)步驟4.1 輸入與輸出的運行樣本的采集 采樣對網絡反饋系統(tǒng)的建立是極其重要的。它不僅需要獲得原系統(tǒng)的動態(tài)數(shù)據(jù),還需要獲得了靜態(tài)的數(shù)據(jù)。參考信號應該包括原始系統(tǒng)所有的工作范圍,并確保近似。信號的欲處理的第一階段是從每0HZ到50HZ中得到10HZ,并得到開環(huán)響應。第二階段是混亂信號的輸入,當每10秒鐘出現(xiàn)預處理信號時,隨機信號輸入,并得到閉環(huán)響應。基于這些輸入,將得到1600組得到運行樣本。4.2 網絡的建設靜態(tài)神經網絡和動態(tài)神經網絡的完美組合將能構建一個反饋系統(tǒng)。靜態(tài)神經網絡的結構是由2個輸入層的神經元,3個輸出層的神經元和12個隱蔽層的神經元組成。隱藏神經元的激勵函數(shù)是單調平滑雙曲正切函數(shù)。輸出層是由線性臨界激勵函數(shù)的神經元組成。運行數(shù)據(jù)是這些速度的開環(huán),閉環(huán)的相對應速度和設置的參考的速度。50次運行之后,神經網絡的運行錯誤達到0.001。神經網絡的負荷和臨界值被保存下來。并得到原系統(tǒng)的反饋模型。5. 實驗和結果5.1 系統(tǒng)硬件硬件系統(tǒng)包括上層監(jiān)督計算機安裝,控制結構軟件WinCC6.0,西門子S7-300PLC,變頻器,異步電動機和光電編碼器。選擇S7-315-2DP PLC控制器,它有一個PROFIBUS-DP接口和一個MPI接口。高速采集模塊是FM350-1。WinCC用MPI協(xié)議被CP5611貫穿到S7-300。 這個逆變器的類型是西門子的MMV。西門子的PLC能兼容美國的協(xié)議。在這個系統(tǒng)上ACB15模塊被增加在逆變器上。5.2 軟件編程5.2.1 通信介紹 MPI(多點接口)是一種簡單、便宜的通訊策略,運用在運行慢,非大型數(shù)據(jù)轉換的場合。在WinCC與PLC之間的數(shù)據(jù)轉換不是很大,所以選擇MPI協(xié)議。MMV變頻器作為從動裝置連接到PROFIBUS網絡,并安裝到CB15 PROFIBUS模塊上。PPO1或PPO3的數(shù)據(jù)類型可供選擇。它允許控制信號直接發(fā)送到變頻地址,或者使用STEP7V5.2 SFC14/15的系統(tǒng)功能模塊。OPC能有效的提供完整的數(shù)據(jù)和通信能力。不同類型的服務器和客戶機可以存取彼此的數(shù)據(jù)來源。比較傳統(tǒng)的軟件模式和硬件發(fā)展,設備生產商只需要培養(yǎng)一個操作員。這樣可以縮短開發(fā)周期,節(jié)省人力資源,并簡化了整個控制系統(tǒng)的結構。矩陣實驗室的神經網絡運行需要系統(tǒng)各種各樣數(shù)據(jù)的時候,這些數(shù)據(jù)不能從PLC或WinCC直接讀取。所以OPC技術可以用來獲得在WinCC和Exce之中所需的數(shù)據(jù)。設置WinCC作為OPC DA的服務器,一個OPC客戶將被很好的建立關于VBA。系統(tǒng)的實時數(shù)據(jù)被WinCC讀取并寫到Excel上,然后Excel上的數(shù)據(jù)被轉換到矩陣實驗室為在離線運行時獲得原系統(tǒng)的反饋系統(tǒng)。5.2.2控制程序通常用STEP7 V5.2的標準模板庫來對通訊,數(shù)據(jù)采集和控制算法進行編程,速度采樣程序和存儲程序被編程為有規(guī)律的中斷程序A,中斷周期為100毫秒。為了阻止程序A運行時間超過100毫秒,減小程序的運行周期和系統(tǒng)錯誤,控制步驟和神經網絡算法被編程為主程序B。神經網絡算法標準化對運行采樣來說是必要的以便加快信號收集速度,在最終運行之前輸入和輸出信號乘以一個放大系數(shù)。5.3 實驗結果當速度參照是100秒每周期的方波信號時,逆變器運行的是矢量模式。結果表明,神經網絡控制的跟蹤性能均優(yōu)于傳統(tǒng)的常規(guī)PI控制。當速度參照保持恒定時,經過80秒時間,負荷降低到沒有負荷,經過120秒時間,負荷增加到滿負荷,所以在傳統(tǒng)控制下的速度響應曲線和網絡反饋控制下的速度響應曲線如下圖所示。很明顯,在穩(wěn)定性能上,網絡反饋控制的負載擾動優(yōu)于傳統(tǒng)的PI控制的負載擾動。 (PI控制下的速度響應) (網絡反饋控制下的速度響應)6. 結論為了改善PLC變頻調速系統(tǒng)的控制性能,因而神經網絡反饋系統(tǒng)被使用。并給出了一個變頻調速系統(tǒng)的數(shù)學模型,且其可逆轉性得到了檢驗。反饋系統(tǒng)和原系統(tǒng)被組合并構建成偽線性系統(tǒng),并設計了線性控制的方法進行控制。通過實驗,PLC神經網絡的反饋系統(tǒng)在工業(yè)應用中具有有效性和可行性的到了驗證。
收藏