高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 第2節(jié) 排列與組合課件 理 新人教A版.ppt
《高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 第2節(jié) 排列與組合課件 理 新人教A版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 第2節(jié) 排列與組合課件 理 新人教A版.ppt(42頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2節(jié) 排列與組合,.理解排列、組合的概念 .理解排列數(shù)公式、組合數(shù)公式 .能利用公式解決一些簡(jiǎn)單的實(shí)際問題,整合主干知識(shí),排列與組合,n、mN*且mn,質(zhì)疑探究:如何區(qū)分某一問題是排列問題還是組合問題? 提示:看選出的元素與順序是否有關(guān),若與順序有關(guān),則是排列問題;若與順序無關(guān),則是組合問題,1用數(shù)字1、2、3、4、5組成的無重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為( ) A8 B24 C48 D120 答案:C,2已知5個(gè)工程隊(duì)承建某項(xiàng)工程的5個(gè)不同的子項(xiàng)目,每個(gè)工程隊(duì)承建一項(xiàng),其中甲工程隊(duì)不能承建3號(hào)子項(xiàng)目,則不同的承建方案共有( ) A4種 B16種 C64種 D96種 答案:D,3某臺(tái)小型晚會(huì)由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在前兩位,節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位該臺(tái)晚會(huì)節(jié)目演出順序的編排方案共有( ) A36種 B42種 C48種 D54種,答案:B,4有5張卡片分別寫有數(shù)字1、2、3、4、5. (1)從中任取4張,共有_種不同取法; (2)從中任取4張,排成一個(gè)四位數(shù),共組成_個(gè)不同的四位數(shù). 答案:(1)5 (2)120,5某班3名同學(xué)去參加5項(xiàng)活動(dòng),每人只參加1項(xiàng),同一項(xiàng)活動(dòng)最多2人參加,則3人參加活動(dòng)的方案共有_種(用數(shù)字作答). 答案:120,聚集熱點(diǎn)題型,典例賞析1 (2015金華聯(lián)考)有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù) (1)選5人排成一排; (2)排成前后兩排,前排3人,后排4人; (3)全體排成一排,甲不站排頭也不站排尾; (4)全體排成一排,女生必須站在一起; (5)全體排成一排,男生互不相鄰,排列問題,思路索引本題是排隊(duì)問題,以人或以位置分析其特殊性、優(yōu)先考慮,選取合適的方法:捆綁法、插空法、間接法等,拓展提高 求解排列應(yīng)用問題的主要方法,變式訓(xùn)練 1六個(gè)人按下列要求站成一排,分別有多少種不同的站法? (1)甲不站在兩端;(2)甲、乙必須相鄰;(3)甲、乙不相鄰;(4)甲、乙之間恰有兩人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人順序已定,典例賞析2 某醫(yī)院有內(nèi)科醫(yī)生12名,外科醫(yī)生8名,現(xiàn)選派5名參加賑災(zāi)醫(yī)療隊(duì),其中 (1)某內(nèi)科醫(yī)生甲與某外科醫(yī)生乙必須參加,共有多少種不同選法? (2)甲、乙均不能參加,有多少種選法? (3)甲、乙兩人至少有一人參加,有多少種選法? (4)隊(duì)中至少有一名內(nèi)科醫(yī)生和一名外科醫(yī)生,有幾種選法?,組合問題,思路索引要注意分析特殊元素是“含”、“不含”、“至少”、“至多”,(2)“至少”或“至多”含有幾個(gè)元素的題型:解這類題必須十分重視“至少”與“至多”這兩個(gè)關(guān)鍵詞的含義,謹(jǐn)防重復(fù)與漏解,用直接法和間接法都可以求解,通常用直接法分類復(fù)雜時(shí),考慮逆向思維,用間接法處理 提醒:區(qū)分一個(gè)問題是排列問題還是組合問題,關(guān)鍵在于是否與順序有關(guān),拓展提高 組合問題常有以下兩類題型: (1)“含有”或“不含有”某些元素的組合題型:“含”,則先將這些元素取出,再由另外元素補(bǔ)足;“不含”,則先將這些元素剔除,再從剩下的元素中去選取,變式訓(xùn)練 2從7名男生5名女生中選取5人,分別求符合下列條件的選法總數(shù) (1)A,B必須當(dāng)選;(2)A,B不全當(dāng)選,典例賞析3 按下列要求分配6本不同的書,各有多少種不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本; (2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本; (4)平均分配給甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外兩份每份1本; (6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本; (7)甲得1本,乙得1本,丙得4本,分組分配問題,思路索引本題是分組分配問題,要注意區(qū)分平均、不平均分組或分配的區(qū)別與聯(lián)系,拓展提高 均勻分組與不均勻分組、無序分組與有序分組是組合問題的常見題型解決此類問題的關(guān)鍵是正確判斷分組是均勻分組還是不均勻分組,無序均勻分組要除以均勻組數(shù)的階乘數(shù),還要充分考慮到是否與順序有關(guān);有序分組要在有無序分組的基礎(chǔ)上乘以分組數(shù)的階乘數(shù),變式訓(xùn)練 34個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒內(nèi) (1)恰有1個(gè)盒不放球,共有幾種放法? (2)恰有1個(gè)盒內(nèi)有2個(gè)球,共有幾種放法?,(2)“恰有1個(gè)盒內(nèi)有2個(gè)球”,即另外3個(gè)盒子放2個(gè)球,每個(gè)盒子至多放1個(gè)球,也即另外3個(gè)盒子中恰有一個(gè)空盒,因此,“恰有1個(gè)盒內(nèi)有2個(gè)球”與“恰有1個(gè)盒不放球”是同一件事,所以共有144種放法,備課札記 _,提升學(xué)科素養(yǎng),(理)特殊元素(位置)優(yōu)先安排法,3位男生和3位女生共6位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)為( ) A360 B288 C216 D96 審題視角 分兩步計(jì)算第一步:計(jì)算滿足3位女生中有且只有兩位相鄰的排法將3位女生分成兩組,插空到排好的3位男生中 第二步:在第一步的結(jié)果中排除甲站兩端的排法,答案 B,方法點(diǎn)睛 該題涉及兩個(gè)特殊條件:“甲不站兩端”與“3女生中有且只有兩位女生相鄰”,顯然對(duì)于“甲不站兩端”這類問題可利用間接法求解,將其轉(zhuǎn)化為“甲站兩端”的問題,要優(yōu)先安排甲,然后再安排其他元素;對(duì)于“三位女生中有且只有兩位女生相鄰”中的相鄰問題利用捆綁法,而不相鄰問題可以利用插空法求解,甲、乙、丙3個(gè)同學(xué)在課余時(shí)間負(fù)責(zé)一個(gè)計(jì)算機(jī)房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同學(xué)不值周一的班,則可以排出的不同值班表有( ) A90種 B89種 C60種 D59種,答案:C,1一個(gè)區(qū)別 排列與組合最根本的區(qū)別在于“有序”和“無序”取出元素后交換順序,如果與順序有關(guān)是排列,如果與順序無關(guān)即是組合,3三個(gè)優(yōu)先 (1)先特殊后一般 (2)先組合后排列 (3)先分組再分配 4四字口訣 求解排列組合問題的思路:“排組分清,加乘明確;有序排列,無序組合;分類相加,分步相乘”,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大一輪復(fù)習(xí) 第十章 第2節(jié) 排列與組合課件 新人教A版 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第十 排列 組合 課件 新人
鏈接地址:http://m.appdesigncorp.com/p-1799169.html