《數(shù)學(xué)思想方法》PPT課件.ppt
數(shù)學(xué)思想方法是指現(xiàn)實(shí)世界的空間形式和 數(shù)量關(guān)系反映到人的意識(shí)中,經(jīng)過思維活動(dòng)產(chǎn)生的結(jié)果,是對(duì)數(shù)學(xué)事實(shí)與數(shù)學(xué)理論的本質(zhì)認(rèn)識(shí). 數(shù)學(xué)思想:是對(duì)數(shù)學(xué)內(nèi)容的進(jìn)一步提煉和概括,是對(duì)數(shù)學(xué)知識(shí)的本質(zhì)認(rèn)識(shí),是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí),帶有普遍的指導(dǎo)意義,是建立數(shù)學(xué)模型和用數(shù)學(xué)解決問題的指導(dǎo)思想. 數(shù)學(xué)方法:是指從數(shù)學(xué)角度提出問題、解決問題過程中所采用的各種方式、手段、途徑等.,數(shù)學(xué)思想和數(shù)學(xué)方法是緊密聯(lián)系的,兩者的本質(zhì)相同,只是站在不同的角度看問題,故?;旆Q為“數(shù)學(xué)思想方法”.初中數(shù)學(xué)中的主要數(shù)學(xué)思想方法有:,化歸與轉(zhuǎn)化思想; 方程與函數(shù)思想; 數(shù)形結(jié)合思想; 分類討論思想; 統(tǒng)計(jì)思想; 整體思想; 消元法; 配方法; 待定系數(shù)法等.,分類討論思想方法,分類討論思想是指當(dāng)數(shù)學(xué)問題不宜統(tǒng)一方法處理時(shí),我們常常根據(jù)研究對(duì)象性質(zhì)的差異,按照一定的分類方法或標(biāo)準(zhǔn),將問題分為全而不重,廣而不漏的若干類,然后逐類分別進(jìn)行討論,再把結(jié)論匯總,得出問題的答案的思想.,分類原則: (1)分類中的每一部分都是相互獨(dú)立的; (2)一次分類必須是同一個(gè)標(biāo)準(zhǔn); (3)分類討論應(yīng)逐級(jí)進(jìn)行.分類思想有利于完整地考慮問題,化整為零地解決問題. 分類討論問題常與開放探索型問題綜合在一起,貫穿于代數(shù)、幾何的各個(gè)數(shù)學(xué)知識(shí)板塊,不論是在分類中探究,還是在探究中分類,都需有扎實(shí)的基礎(chǔ)知識(shí)和靈活的思維方式,對(duì)問題進(jìn)行全面衡量、統(tǒng)籌兼顧,切忌以偏概全.,【例1】(2010常州中考)如圖, 已知二次函數(shù)y=ax2+bx+3的圖象 與x軸相交于點(diǎn)A、C,與y軸相交 于點(diǎn)B,A( 0),且AOBBOC.,(1)求C點(diǎn)坐標(biāo)、ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關(guān)系式; (2)在線段AC上是否存在點(diǎn)M(m,0).使得以線段BM為直徑的圓與邊BC交于P點(diǎn)(與點(diǎn)B不同),且以點(diǎn)P、C、O為頂點(diǎn)的三角形是等腰三角形?若存在,求出m的值;若不存在,請(qǐng)說明理由.,【思路點(diǎn)撥】,【自主解答】(1)由題意,得B(0,3). AOBBOC, OAB=OBC, OC=4,C(4,0). OAB+OBA=90, OBC+OBA=90.ABC=90. y=ax2+bx+3的圖象經(jīng)過點(diǎn)A( 0),C(4,0),,(2)存在.如圖1,當(dāng)CP=CO時(shí), 點(diǎn)P在以BM為直徑的圓上, BM為圓的直徑. BPM=90, PMAB. CPMCBA. 所以CM=5. m=-1.,如圖2,當(dāng)PC=PO時(shí),點(diǎn)P在OC垂 直平分線上,所以PC=PO=PB,所以 PC= BC=2.5. 由CPMCBA,得 當(dāng)OC=OP時(shí),M點(diǎn)不在線段AC上. 綜上所述,m的值為 或-1.,1.(2011浙江中考)解關(guān)于x的不等式組:,【解析】 由得(a-1)x2a-3, 由得x 當(dāng)a=1時(shí),由得-2-3成立,x 當(dāng)a1時(shí),x 當(dāng)1a 此時(shí)不等式組的解是x,當(dāng)a 時(shí), 此時(shí)不等式組的解是x 當(dāng)a1時(shí),不等式組的解集為 a1,所以a-10, 所以不等式組的解為 x 綜上所述:當(dāng)1a 時(shí),不等式組的解集是x 當(dāng)a 時(shí),不等式組的解集是x 當(dāng)a1時(shí),不等式組的解集為,數(shù)形結(jié)合思想,數(shù)形結(jié)合思想是指把問題中的數(shù)量關(guān)系與形象直觀的幾何圖形有機(jī)地結(jié)合起來,并充分利用這種結(jié)合尋找解題的思路,使問題得到解決的思想方法.在分析問題的過程中,注意把數(shù)和形結(jié)合起來考查,根據(jù)問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,化難為易,獲取簡(jiǎn)便易行的方法.,數(shù)形結(jié)合思想方法是初中數(shù)學(xué)中一種重要的思想方法.數(shù)是形的抽象概括,形是數(shù)的直觀表現(xiàn),用數(shù)形結(jié)合的思想解題可分兩類:一是利用幾何圖形的直觀表示數(shù)的問題,它常借用數(shù)軸、函數(shù)圖象等;二是運(yùn)用數(shù)量關(guān)系來研究幾何圖形問題,常需要建立方程(組)或建立函數(shù)關(guān)系式等.,【例2】(2010曲靖中考)如圖,在平 面直角坐標(biāo)系xOy中,拋物線y=x2向左 平移1個(gè)單位,再向下平移4個(gè)單位, 得到拋物線y=(x-h)2+k,所得拋物線與 x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)與 y軸交于點(diǎn)C,頂點(diǎn)為D.,(1)求h、k的值; (2)判斷ACD的形狀,并說明理由; (3)在線段AC上是否存在點(diǎn)M,使AOM與ABC相似.若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.,【思路點(diǎn)撥】,【自主解答】(1)y=x2的頂點(diǎn)坐標(biāo)為(0,0), y=(x-h)2+k的頂點(diǎn)坐標(biāo)為D(-1,-4), h=-1,k=-4. (2)由(1)得y=(x+1)2-4. 當(dāng)y=0時(shí),(x+1)2-4=0,x1=-3,x2=1, A(-3,0),B(1,0). 當(dāng)x=0時(shí),y=(x+1)2-4=(0+1)2-4=-3, C點(diǎn)坐標(biāo)為(0,-3). 又因?yàn)轫旤c(diǎn)坐標(biāo)D(-1,-4),作出拋物線的對(duì)稱軸x=-1交x軸于點(diǎn)E. 作DFy軸交y軸于點(diǎn)F. 在RtAED中, AD2=22+42=20; 在RtAOC中, AC2=32+32=18; 在RtCFD中, CD2=12+12=2; AC2+CD2=AD2, ACD是直角三角形.,(3)存在. 由(2)知,AOC為等腰直角三角形,BAC=45,在AC上取點(diǎn)M, 連接OM,過M點(diǎn)作MGAB于點(diǎn)G, AC= 若AOMABC,則 MGAB,AG2+MG2=AM2,若AOMACB,則 OG=AO-AG=3-2=1. M點(diǎn)在第三象限,M(-1,-2). 綜上、所述,存在點(diǎn)M使AOM與ABC相似,且這樣的點(diǎn) 有兩個(gè),其坐標(biāo)分別為( ),(-1,-2).,2.(2010十堰中考)如圖,點(diǎn)C、D是以 線段AB為公共弦的兩條圓弧的中點(diǎn),AB=4, 點(diǎn)E、F分別是線段CD、AB上的動(dòng)點(diǎn),設(shè)AF=x, AE2-FE2=y,則能表示y與x的函數(shù)關(guān)系的圖象是( ),【解析】選C.延長(zhǎng)CD交AB于點(diǎn)G, 則CGAB,AG=BG=2, AE2-FE2=EG2+AG2-(EG2+FG2) =4-FG2=4-(2-x)2 =-x2+4x, y=-x2+4x.且根據(jù)題意知x0,y0.故選C.,3.(2010成都中考)如圖,在ABC中, B=90,AB=12 mm,BC=24 mm,動(dòng)點(diǎn)P從 點(diǎn)A開始沿邊AB向B以2 mm/s的速度移動(dòng) (不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC向C以4 mm/s的速度移動(dòng)(不與點(diǎn)C重合).如果P、Q分別從A、B同時(shí)出發(fā),那么經(jīng)過_秒,四邊形APQC的面積最小.,【解析】設(shè)P、Q分別從A、B同時(shí)出發(fā),那么經(jīng)過t秒,四邊形APQC的面積為S, 則S= ABBC- BPBQ = 1224- (12-2t)4t, S=4t2-24t+144 =4(t-3)2+108, 當(dāng)t=3 s時(shí),四邊形APQC的面積最小. 答案:3,4.(2010臨沂中考)如圖,二次函數(shù) y=-x2+ax+b的圖象與x軸交于A(- ,0)、 B(2,0)兩點(diǎn),且與y軸交于點(diǎn)C;,(1)求該拋物線的解析式,并判斷ABC的形狀; (2)在x軸上方的拋物線上有一點(diǎn)D,且以A、C、D、B四點(diǎn)為頂點(diǎn)的四邊形是等腰梯形,請(qǐng)直接寫出D點(diǎn)的坐標(biāo); (3)在此拋物線上是否存在點(diǎn)P,使得以A、C、B、P四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.,【解析】(1)根據(jù)題意,將A(- ,0),B(2,0)代入 y=-x2+ax+b中, 得 解這個(gè)方程組,得a= b=1, 該拋物線的解析式為y=-x2+ x+1, 當(dāng)x=0時(shí),y=1, 點(diǎn)C的坐標(biāo)為(0,1),在AOC中,,在BOC中, ABC是直角三角形.,(2)點(diǎn)D的坐標(biāo)為( 1). (3)存在.由(1)知,ACBC. 若以BC為底邊,則BCAP, 如圖1所示,可求得直線BC的解析式為 y= +1, 直線AP可以看作是由直線BC平移得到的,所以設(shè)直線AP的解析式為y= +b, 把點(diǎn)A( 0)代入直線AP的解析式,求得b=,直線AP的解析式為y= 點(diǎn)P既在拋物線上,又在直線AP上, 點(diǎn)P的縱坐標(biāo)相等,即 解得,若以AC為底邊,則BPAC,如圖2所示. 可求得直線AC的解析式為y=2x+1. 直線BP可以看作是由直線AC平移得到的, 所以設(shè)直線BP的解析式為y=2x+b, 把點(diǎn)B(2,0)代入直線BP的解析式,求得b=-4, 直線BP的解析式為y=2x-4. 點(diǎn)P既在拋物線上,又在直線BP上, 點(diǎn)P的縱坐標(biāo)相等,即-x2+ +1=2x-4, 解得x1= x2=2(舍去), 當(dāng)x= 時(shí),y=-9, 點(diǎn)P的坐標(biāo)為( ,-9). 綜上所述,滿足題目條件的點(diǎn)P為( )或( ).,化歸轉(zhuǎn)化思想,化歸思想是一種最基本的數(shù)學(xué)思想,用于解決問題時(shí)的基本思路是化未知為已知,把復(fù)雜的問題簡(jiǎn)單化,把生疏的問題熟悉化,把非常規(guī)問題化為常規(guī)問題,把實(shí)際問題數(shù)學(xué)化,實(shí)現(xiàn)不同的數(shù)學(xué)問題間的相互轉(zhuǎn)化,這也體現(xiàn)了把不易解決的問題轉(zhuǎn)化為有章可循,容易解決的問題的思想.,【例3】(2009泉州中考)如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.,(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示); (2)若BAD=60,該花圃的面積為S米2. 求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并 求當(dāng)S= 時(shí)x的值; 如果墻長(zhǎng)為24米,試問S有最大值還是最小值?這個(gè)值是多 少?,【思路點(diǎn)撥】,【自主解答】(1)AB=CD=x米, BC=40-AB-CD=(40-2x)米. (2)如圖,過點(diǎn)B、C分別作BEAD 于E,CFAD于F,在RtABE中, AB=x,BAE=60, AE= x,BE= 同理DF= x,CF= 又EF=BC=40-2x, AD=AE+EF+DF= x+40-2x+ x=40-x,解得:x1=6,x2= (舍去), x=6.,由題意,得40-x24,解得x16, 結(jié)合得16x20. 由得, 函數(shù)圖象為開口向下的拋物線的一段, 其對(duì)稱軸為x= 16 由上圖可知,,當(dāng)16x20時(shí),S隨x的增大而減小, 當(dāng)x=16時(shí),S取得最大值. 此時(shí),S最大值=,5.如圖,ABCD是一矩形紙片,E是AB上 的一點(diǎn),且BEEA=53,EC= 把 BCE沿折痕EC向上翻折,若點(diǎn)B恰好 落在AD邊上,設(shè)這個(gè)點(diǎn)是F,以點(diǎn)A為 原點(diǎn),以直線AD為x軸,以直線BA為y軸建立平面直角坐標(biāo)系,則過點(diǎn)F、點(diǎn)C的一次函數(shù)解析式為_.,【解析】BEEA=53,BE=EF,EFEA=53,AFAE=43. AEF=DFC,AEFDFC, 設(shè)BE=5x, 則AF=4x,CD=8x,FD=6x,BC=10 x,又CE= 由勾股定理得 x=3,所以BC=30,AF=12,CD=24, F(12,0),C(30,-24), CF的解析式為y= +16. 答案:y= +16,6.(2011涼山中考)我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2 +b3展開式中的系數(shù)等等.,(1)根據(jù)上面的規(guī)律,寫出(a+b)5的展開式. (2)利用上面的規(guī)律計(jì)算:25-524+1023-1022+52-1.,【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 (2)原式=25+524(-1)+1023(-1)2+1022(-1)3 +52(-1)4+(-1)5=(2-1)5=1.,7.(2010威海中考)(1)探究新知: 如圖,已知ADBC,AD=BC,點(diǎn)M, N是直線CD上任意兩點(diǎn). 求證:ABM與ABN的面積相等. 如圖,已知ADBE,AD=BE,ABCD EF,點(diǎn)M是直線CD上任一點(diǎn),點(diǎn)G是直線 EF上任一點(diǎn).試判斷ABM與ABG的面 積是否相等,并說明理由.,(2)結(jié)論應(yīng)用: 如圖,拋物線y=ax2+bx+c的頂點(diǎn)為 C(1,4),交x軸于點(diǎn)A(3,0),交y軸于 點(diǎn)D.試探究在拋物線y=ax2+bx+c上 是否存在除點(diǎn)C以外的點(diǎn)E,使得 ADE與ACD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由. (友情提示:解答本問題過程中,可以直接使用“探究新知”中的結(jié)論.),【解析】(1)分別過點(diǎn)M,N作MEAB, NFAB,垂足分別為點(diǎn)E,F. ADBC,AD=BC, 四邊形ABCD為平行四邊形. ABCD.ME=NF. SABM= ABME,SABN= ABNF, SABM=SABN.,相等.理由如下:分別過點(diǎn)D,E作DHAB,EKAB,垂足分別為H,K. 則DHA=EKB=90. ADBE, DAH=EBK. AD=BE, DAHEBK. DH=EK,CDABEF, SABM= ABDH, SABG= ABEK,SABM=SABG.,(2)存在. 因?yàn)閽佄锞€的頂點(diǎn)坐標(biāo)是C(1,4),所以,可設(shè)拋物線的表達(dá)式為y=a(x-1)2+4.又因?yàn)閽佄锞€經(jīng)過點(diǎn)A(3,0),將其坐標(biāo)代入上式,得0a(3-1)2+4, 解得a=-1. 該拋物線的表達(dá)式為y=-(x-1)2+4, 即y=-x2+2x+3. D點(diǎn)坐標(biāo)為(0,3).,設(shè)直線AD的表達(dá)式為y=kx+3,代入點(diǎn)A的坐標(biāo),得0=3k+3,解得k=-1. 直線AD的表達(dá)式為y=-x+3. 過C點(diǎn)作CGx軸,垂足為G,交AD于點(diǎn)H,則H點(diǎn)的縱坐標(biāo)為 -1+32. CH=CG-HG=4-2=2.,設(shè)點(diǎn)E的橫坐標(biāo)為m, 則點(diǎn)E的縱坐標(biāo)為-m2+2m+3. 過E點(diǎn)作EFx軸,垂足為F,交AD于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)為 3-m,EFCG. 由(1)可知:若EP=CH,則ADE與ADC的面積相等.,(a)若E點(diǎn)在直線AD的上方(如圖), 則PF3-m, EF=-m2+2m+3. EP=EF-PF=-m2+2m+3-(3-m)=-m2+3m. -m2+3m=2.解得m1=2,m2=1. 當(dāng)m=2時(shí),PF=3-2=1,EF=3. E點(diǎn)坐標(biāo)為(2,3). 同理當(dāng)m=1時(shí),E點(diǎn)坐標(biāo)為(1,4),與C點(diǎn)重合,故舍去.,(b)若E點(diǎn)在直線AD的下方(如圖), 則PE=(3-m)-(-m2+2m+3)=m2-3m, m2-3m=2,解得,當(dāng)m= 時(shí),E點(diǎn)的縱坐標(biāo)為 當(dāng)m= 時(shí),E點(diǎn)的縱坐標(biāo)為 在拋物線上存在除點(diǎn)C以外的點(diǎn)E,使得ADE與ACD的面 積相等,E點(diǎn)的坐標(biāo)為E1(2,3);,