《(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)、三角恒等變換與解三角形 第2講 三角恒等變換與解三角形課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)、三角恒等變換與解三角形 第2講 三角恒等變換與解三角形課件 理.ppt(50頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2講三角恒等變換與解三角形,專題一三角函數(shù)、三角恒等變換與解三角形,板塊三專題突破核心考點(diǎn),,考情考向分析,正弦定理、余弦定理以及解三角形問(wèn)題是高考的必考內(nèi)容,主要考查: 1.邊和角的計(jì)算. 2.三角形形狀的判斷. 3.面積的計(jì)算. 4.有關(guān)參數(shù)的范圍問(wèn)題.由于此內(nèi)容應(yīng)用性較強(qiáng),與實(shí)際問(wèn)題結(jié)合起來(lái)進(jìn)行命題將是今后高考的一個(gè)關(guān)注點(diǎn),不可輕視.,,,熱點(diǎn)分類突破,真題押題精練,內(nèi)容索引,熱點(diǎn)分類突破,1.三角求值“三大類型” “給角求值”“給值求值”“給值求角”. 2.三角函數(shù)恒等變換“四大策略” (1)常值代換:特別是“1”的代換,1sin2cos2tan 45等. (2)項(xiàng)的拆分與角的配湊:
2、如sin22cos2(sin2cos2)cos2,()等. (3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.,,熱點(diǎn)一三角恒等變換,解析,答案,,解析,答案,,所以sin sin() sin cos()cos sin(),(1)三角變換的關(guān)鍵在于對(duì)兩角和與差的正弦、余弦、正切公式,二倍角公式,三角恒等變換公式的熟記和靈活應(yīng)用,要善于觀察各個(gè)角之間的聯(lián)系,發(fā)現(xiàn)題目所給條件與恒等變換公式的聯(lián)系,公式的使用過(guò)程要注意正確性,要特別注意公式中的符號(hào)和函數(shù)名的變換,防止出現(xiàn)“張冠李戴”的情況. (2)求角問(wèn)題要注意角的范圍,要根據(jù)已知條件將所求角的范圍盡量縮小
3、,避免產(chǎn)生增解.,,解析,答案,解析,答案,,將上式兩邊分別平方,得44sin 23sin22, 即3sin224sin 240,,,熱點(diǎn)二正弦定理、余弦定理,解答,例2(2017全國(guó))ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin A cos A0,a2 ,b2. (1)求c;,在ABC中,由余弦定理,得a2b2c22bccos A,,即c22c240,解得c6(舍去)或c4. 所以c4.,(2)設(shè)D為BC邊上一點(diǎn),且ADAC,求ABD的面積.,解答,關(guān)于解三角形問(wèn)題,一般要用到三角形的內(nèi)角和定理,正弦、余弦定理及有關(guān)三角形的性質(zhì),常見(jiàn)的三角變換方法和原則都適用,同時(shí)要注意“三
4、統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”,這是使問(wèn)題獲得解決的突破口.,,跟蹤演練2(2018廣州模擬)在ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知B60,c8.,解答,解由題意得M,N是線段BC的兩個(gè)三等分點(diǎn),,又B60,AB8, 在ABN中,由余弦定理得12x2644x2282xcos 60, 解得x2(負(fù)值舍去),則BM2. 在ABM中,由余弦定理, 得AB2BM22ABBMcos BAM2,,(2)若b12,求ABC的面積.,解答,則sin Asin(BC)sin Bcos Ccos Bsin C,,解三角形與三角函數(shù)的綜合是近幾年高考的熱點(diǎn),主要考查三角形的基本量,三角形
5、的面積或判斷三角形的形狀.,熱點(diǎn)三解三角形與三角函數(shù)的綜合問(wèn)題,解答,解答,(2)設(shè)a2,c3,求b和sin(2AB)的值.,解三角形與三角函數(shù)的綜合題,要優(yōu)先考慮角的范圍和角之間的關(guān)系;對(duì)最值或范圍問(wèn)題,可以轉(zhuǎn)化為三角函數(shù)的值域來(lái)求解.,,解答,解答,bc12, 又2abc,,真題押題精練,1.(2017山東改編)在ABC中,角A,B,C的對(duì)邊分別為a,b,c.若ABC為銳角三角形,且滿足sin B(12cos C)2sin Acos Ccos Asin C,則下列等式成立的是______.(填序號(hào)) a2b; b2a; A2B; B2A.,真題體驗(yàn),解析,答案,,解析等式右邊sin Aco
6、s C(sin Acos Ccos Asin C)sin Acos Csin(AC)sin Acos Csin B, 等式左邊sin B2sin Bcos C, sin B2sin Bcos Csin Acos Csin B. 由cos C0,得sin A2sin B. 根據(jù)正弦定理,得a2b.,2.(2018全國(guó))已知sin cos 1,cos sin 0,則sin() ________.,答案,解析,解析sin cos 1, cos sin 0, 22得12(sin cos cos sin )11,,解析,答案,sin Ccos C,即tan C1.,解析,4.(2018全國(guó))ABC的內(nèi)角
7、A,B,C的對(duì)邊分別為a,b,c.已知bsin C csin B4asin Bsin C,b2c2a28,則ABC的面積為_(kāi)_______.,答案,解析bsin Ccsin B4asin Bsin C, 由正弦定理得 sin Bsin Csin Csin B4sin Asin Bsin C.,押題預(yù)測(cè),解析,押題依據(jù),押題依據(jù)三角形的面積求法較多,而在解三角形中主要利用正弦、余弦定理求解,此題很好地體現(xiàn)了綜合性考查的目的,也是高考的重點(diǎn).,答案,解答,押題依據(jù)三角函數(shù)和解三角形的交匯命題是近幾年高考命題的趨勢(shì),本題綜合考查了三角變換、余弦定理和三角函數(shù)的值域,還用到數(shù)列、基本不等式等知識(shí),對(duì)學(xué)生能力要求較高.,押題依據(jù),(2)在ABC中,sin B,sin A,sin C成等比數(shù)列,求此時(shí)f(A)的值域.,解答,因?yàn)閟in B,sin A,sin C成等比數(shù)列, 所以sin2Asin Bsin C, 所以a2bc,,因?yàn)?