2018年高中數(shù)學(xué) 第四章 導(dǎo)數(shù)應(yīng)用 4.1.1 導(dǎo)數(shù)與函數(shù)的單調(diào)性課件4 北師大版選修1 -1.ppt
函數(shù)的單調(diào)性與導(dǎo)數(shù),溫故知新,1到現(xiàn)在為止,我們學(xué)過判斷函數(shù)的單調(diào)性有哪些方法?,“定義法”,“圖象法”,2要判斷 的單調(diào)性,如何進(jìn)行?,回顧分別用定義法、圖象法完成,f(x1),f(x2),f(x)在D上是增函數(shù);,f(x)在D上是減函數(shù);,當(dāng)x1 <x2,f(x1)f(x2),<,0, h(t)0,9.8t6.5,再觀察下面一些函數(shù)的圖象, 探討導(dǎo)函數(shù)的正負(fù)與其對應(yīng)函數(shù)的單調(diào)性的關(guān)系:,f (x)>0,f (x),f (x)0,f (x),f (x)>0,f (x),f (x) <0,f (x) ,f (x)0,函數(shù)y=f (x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;,都有f (x)0,,例1.判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間:,(1) f (x) = x33x; (2) f (x) = x22x3; (3) f (x) = 2x33x224x1,=3(x2+1),>0,=2(x1),即x>1時(shí),,f(x)單調(diào)遞增;,當(dāng)f (x)<0,即x0,當(dāng) f (x)<0,6x2+6x-24,f(x)單調(diào)遞增,f(x )單調(diào)遞減,即 時(shí),,即 時(shí),,所以函數(shù)的單調(diào)遞增區(qū)間為,、,遞減區(qū)間為,解不等式f (x)0,解集在定義域內(nèi)的部分為增區(qū)間;,求函數(shù)的單調(diào)區(qū)間實(shí)質(zhì)就是解導(dǎo)數(shù)不等式f (x)>0或 f (x)4時(shí),或x<1時(shí), f (x)<0 當(dāng)x=4,或x=1時(shí), f (x)=0.,試畫出函數(shù)f(x)圖象的大致形狀,解,當(dāng)1<x0,f (x)在此區(qū)間內(nèi)單調(diào)遞增;,當(dāng)x>4或x<1時(shí):,f (x) 0,導(dǎo)數(shù) f (x) 0,解集在定義域內(nèi)的部分為增區(qū)間;,解不等式f (x)<0,解集在定義域內(nèi)的部分為減區(qū)間;,作業(yè),課本:P31:1,2,謝謝,