歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

一般二次曲線的化簡與分類【青苗教育】

  • 資源ID:127208871       資源大?。?span id="lxmzbvk" class="font-tahoma">1.33MB        全文頁數(shù):31頁
  • 資源格式: PPT        下載積分:2積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要2積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號:
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

一般二次曲線的化簡與分類【青苗教育】

4.2 一般二次曲線的化簡與分類一般二次曲線的化簡與分類(Simplification and classification of general quadratic curves)在中學(xué)平面解析幾何中,曾經(jīng)學(xué)習(xí)了橢圓(圓)、雙曲線和拋物線等圓錐曲線及其標(biāo)準(zhǔn)方程,它們都是二次曲線。本章討論更一般的二次曲線。在平面直角坐標(biāo)系下,關(guān)于x和y的二元二次方程所表示的曲線,稱為一般二次曲線(a11,a12和a22不全為零)。1中小學(xué)4.2.1 一些常用記號一些常用記號(Notations)為了以后討論問題和書寫的方便,引進(jìn)下面的一些記號:2中小學(xué) 根據(jù)這些記號的含義,可驗(yàn)證下面的恒等式成立:F(x,y)=xF1(x,y)+yF2(x,y)+F3(x,y)稱F(x,y)的系數(shù)所組成的矩陣為二次曲線(4.2-1)的系數(shù)矩陣,或稱F(x,y)的矩陣 再引入幾個(gè)記號:332313232212131211aaaaaaaaaA3中小學(xué)例例1 試求二次曲線 的系數(shù)矩陣A,F1(x,y),F2(x,y),F3(x,y),I1,I2,I3,和K1.解解 由以上記號知,0112612862yxyxy4中小學(xué)4.2.2 直角坐標(biāo)變換下,二次曲線方程的系數(shù)變直角坐標(biāo)變換下,二次曲線方程的系數(shù)變換規(guī)律換規(guī)律(Variation low of coefficients equation of quadratic curves under Descartes coordinates)為了選擇適當(dāng)?shù)淖鴺?biāo)變換來化簡二次曲線的方程,需要了解在坐標(biāo)變換下方程的系數(shù)是怎樣變化的。由上節(jié)討論,知道一般的坐標(biāo)變換可以分解為移軸和轉(zhuǎn)軸兩部分。因此,將分別考察移軸變換和轉(zhuǎn)軸變換對方程系數(shù)的影響。5中小學(xué)1)平移變換下二次曲線方程的系數(shù)的變化規(guī)律平移變換下二次曲線方程的系數(shù)的變化規(guī)律將平移公式:x=x+x0,y=y+y0 代入曲線方程,化簡整理,設(shè)曲線方程變?yōu)镕(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0比較方程系數(shù),得平移變換下曲線方程系數(shù)的變化規(guī)律:(1)二次項(xiàng)系數(shù)不變;(2)一次項(xiàng)系數(shù)變?yōu)镕1(x0,y0),F2(x0,y0);(3)常數(shù)項(xiàng)變?yōu)镕(x0,y0).6中小學(xué)若取新坐標(biāo)原點(diǎn)O(x0,y0)滿足方程v則在新坐標(biāo)系下,方程中將無一次項(xiàng),曲線對稱于原點(diǎn),點(diǎn)(x0,y0)就是曲線的對稱中心。如果對稱中心是唯一的,稱為曲線的中心。此時(shí)方程稱為中心方程。v注:當(dāng)I20時(shí),上一方程組就有唯一解,這時(shí)曲線稱為中心型二次曲線;當(dāng)I2=0時(shí),方程組就沒有解或有無窮多解,這時(shí)曲線稱為非中心型二次曲線或無心型二次曲線。7中小學(xué)例例2 求二次曲線 的中心.解解(x0,y0)是對稱中心必須且只需滿足中心方程,即解得(x0,y0)=(0,3).所以(0,3)是曲線的中心.223630 xxyyxy100002000013(,)0,221,30.2F xyxyFxyxy 8中小學(xué)2)旋轉(zhuǎn)變換下二次曲線方程的系數(shù)的變化規(guī)律旋轉(zhuǎn)變換下二次曲線方程的系數(shù)的變化規(guī)律 將旋轉(zhuǎn)公式:x=xcos ysin,y=xsin+ycos 代入曲線方程,化簡整理,曲線方程變?yōu)镕(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0 比較方程系數(shù),得旋轉(zhuǎn)變換下曲線方程系數(shù)的變化規(guī)律:(1)二次項(xiàng)系數(shù)一般可變,但新系下方程的二次項(xiàng)系數(shù)僅與舊系下方程的二次項(xiàng)系數(shù)及旋轉(zhuǎn)角 有關(guān),而與一次項(xiàng)系數(shù)及常數(shù)項(xiàng)無關(guān);(2)一次項(xiàng)系數(shù)一般也可變,但新系下方程的一次項(xiàng)系數(shù)僅與舊系下方程的一次項(xiàng)系數(shù)及旋轉(zhuǎn)角 有關(guān),而與二次項(xiàng)系數(shù)及常數(shù)項(xiàng)無關(guān);(3)常數(shù)項(xiàng)不變。9中小學(xué)根據(jù)公式的表達(dá)式,若選取角,使則方程中沒有交叉乘積項(xiàng)。注:若要通過旋轉(zhuǎn)變換消去交叉項(xiàng),只須旋轉(zhuǎn)角 滿足:a12=(a22-a11)cos sin+a12(cos2-sin2)=0,即 (a22-a11)sin2+2a12cos2=0從而得旋轉(zhuǎn)角 滿足10中小學(xué) 因?yàn)橛嗲械闹悼梢允侨我鈱?shí)數(shù),所以一定存在 滿足上式。這就是說,一定可以通過轉(zhuǎn)角 消去交叉項(xiàng)。上式中的 不是唯一的,為確定起見,一般規(guī)定0 需要說明的是,我們?yōu)槭裁床挥?這是因?yàn)楫?dāng) a11=a22 時(shí),該式?jīng)]有意義,而 完全可以決定旋轉(zhuǎn)角=/4.當(dāng)a12=0時(shí),雖然 也無意義,但這時(shí)方程中已經(jīng)不含交叉項(xiàng),就用不到轉(zhuǎn)軸變換了.1211222tan2aaa112212cot 202aaa112212cot 22aaa112212cot 22aaa11中小學(xué)例例 利用轉(zhuǎn)軸變換,消去二次曲線x2+2xy+y2-4x+y-1=0中的交叉項(xiàng).解解 設(shè)旋轉(zhuǎn)角為,由決定方程得 可取 ,故轉(zhuǎn)軸公式為:代入原方程化簡整理得轉(zhuǎn)軸后的新方程為12中小學(xué)4.2.3 二次曲線的判別二次曲線的判別(Quadratic curve discriminant)從前面的討論可知,二次曲線化簡的關(guān)鍵是如何消去方程中的交叉項(xiàng)xy和一次項(xiàng)。化簡一般二次曲線方程,首先要判別二次曲線的類型,然后根據(jù)曲線的類型,采用不同的坐標(biāo)變換。二次曲線的類型可以用I2來判別:當(dāng)I20時(shí),二次曲線是中心型曲線;當(dāng)I2=0時(shí),二次曲線是非中心型曲線.又可以細(xì)分為以下3種類型:(1)橢圓型:I20,(2)雙曲型:I20,(3)拋物型:I2=0。注注:二次曲線類型判別的嚴(yán)格證明,參看后文的利用不變量化簡曲線方程部分。13中小學(xué)4.2.4 二次曲線的化簡與作圖二次曲線的化簡與作圖(Simplification and graphing of Quadratic curves)根據(jù)坐標(biāo)變換下方程系數(shù)的變化規(guī)律,對于中心型二次曲線,可以先求出曲線的中心,通過移軸變換消去一次項(xiàng),然后再作轉(zhuǎn)軸變換時(shí),就不用整理一次項(xiàng)了。而對于非中心型二次曲線,由于曲線沒有中心,只能先作轉(zhuǎn)軸變換。這就是說,要根據(jù)曲線的類型,采用不同的化簡方法。14中小學(xué)1)中心型二次曲線中心型二次曲線(I20)的化簡與作圖的化簡與作圖:對于中心型二次曲線,采用“先移后轉(zhuǎn)”,較為簡便。其具體步驟是:1、解中心方程組,求出曲線的中心(x0,y0);2、作平移變換,消去一次項(xiàng);3、利用旋轉(zhuǎn)角公式,求出cos 、sin ;4、作旋轉(zhuǎn)變換,消去交叉項(xiàng),得到曲線的標(biāo)準(zhǔn)方程;5、將旋轉(zhuǎn)變換代入平移變換,得到直角坐標(biāo)變換公式;6、作出新舊坐標(biāo)系O-xy、O-xy和O-xy,在新坐標(biāo)系下按照標(biāo)準(zhǔn)方程作出曲線的圖形。15中小學(xué)例例 化簡二次曲線方程5x2+4xy+2y2-24x-12y+18=0,并畫出它的圖形。解解 因 I252-2260,所以曲線為中心型二次曲線。“先移后轉(zhuǎn)”。1、解中心方程組得到曲線中心(2,1)2、做移軸變換 原方程變?yōu)?x2+4xy+2y2-12=0 這里實(shí)際上只需計(jì)算F(2,1)12,因?yàn)橐戚S時(shí)二次項(xiàng)系數(shù)不變,一次項(xiàng)系數(shù)變?yōu)?。3、再做轉(zhuǎn)軸變換消去xy項(xiàng),令得 tan =1/2 或 tan =-2取 tan =1/2,可得 cos =2/51/2,sin=1/51/216中小學(xué)4、轉(zhuǎn)軸變換公式:代入,可將方程化簡為標(biāo)準(zhǔn)方程是這是一個(gè)橢圓,如圖所示.作圖要點(diǎn):要比較準(zhǔn)確地畫出新舊坐標(biāo)系和曲線的圖形,必須掌握好比例、新舊原點(diǎn)的位置以及坐標(biāo)軸的旋轉(zhuǎn)角.本題中坐標(biāo)系O-xy平移到(2,1)成O-xy,再把坐標(biāo)系O-xy旋轉(zhuǎn)角得 O-xy.在新坐標(biāo)系O-xy 中根據(jù)橢圓的標(biāo)準(zhǔn)方程作圖.xyxyxyOOO .5251,5152yxyyxx12622 yx112222 yx17中小學(xué)注:注:本題轉(zhuǎn)軸時(shí)若取tan-2,則可得cos =1/51/2,sin=-2/51/2,所得的轉(zhuǎn)軸公式是 得到的標(biāo)準(zhǔn)方程為 ,圖形相對于原坐標(biāo)系的位置不變。此時(shí)Ox軸的正向恰好是圖中y 軸的反向。18中小學(xué)例例 化簡二次曲線方程x2-3xy+y2+10 x-10y+21=0,寫出坐標(biāo)變換公式并作出它的圖形解解 因?yàn)镮20,所給的二次曲線是雙曲型的.中心方程組解得中心坐標(biāo)為(2,2).作移軸變換原方程化為再作轉(zhuǎn)軸變換,得旋轉(zhuǎn)角為 .故轉(zhuǎn)軸變換為.01023,01032yxyx,2,2yyxx01322yyxx1 1cot2034 ).(21),(21yxyyxx19中小學(xué)二次曲線的方程化簡為標(biāo)準(zhǔn)方程為 這是一條雙曲線,其圖形如圖所示。作圖時(shí),先將坐標(biāo)系O-xy平移到(-2,2)成O-xy,再把坐標(biāo)系O-xy旋轉(zhuǎn)角/4得 O-xy.在新坐標(biāo)系O-xy 中根據(jù)雙曲線的標(biāo)準(zhǔn)方程作圖.221225xy xxyyxyOO22151022xy 20中小學(xué)將轉(zhuǎn)軸公式代入移軸公式,得坐標(biāo)變換公式為,2,2yyxx1()2,21()2.2xxyyxy ).(21),(21yxyyxx21中小學(xué)注:注:利用移軸可以直接化簡缺少xy項(xiàng)的二次曲線方程,化簡的關(guān)鍵是找到恰當(dāng)?shù)囊戚S公式.常用的方法有配方法和代入法.在應(yīng)用配方法時(shí)必須注意,要分別先對關(guān)于x與y的項(xiàng)進(jìn)行集項(xiàng),然后把x2與y2項(xiàng)的系數(shù)括出來再配方.利用直角坐標(biāo)變換的方法化簡曲線方程,不僅能夠得到曲線的標(biāo)準(zhǔn)方程,而且同時(shí)得到坐標(biāo)變換公式,并能作出曲線的圖形,這是其它方法所不能做到的。22中小學(xué)2)非中心型二次曲線非中心型二次曲線(I2=0)的化簡與作圖的化簡與作圖:對于非中心型二次曲線,采用“先轉(zhuǎn)后移”,較為簡便。其具體步驟是:1、利用旋轉(zhuǎn)角公式,求出cos、sin;2、作旋轉(zhuǎn)變換,消去交叉項(xiàng),同時(shí)消去1個(gè)二次項(xiàng);3、對轉(zhuǎn)軸后的方程“配方”,先配二次項(xiàng),再配一次項(xiàng);4、令“配方”后的括號內(nèi)分別為x和 y(相當(dāng)于作平移變換),得到曲線的標(biāo)準(zhǔn)方程。5、將平移變換代入旋轉(zhuǎn)變換,得到直角坐標(biāo)變換公式。6、作出新舊坐標(biāo)系O-xy,O-xy和O-xy,在新坐標(biāo)系下按照標(biāo)準(zhǔn)方程作出曲線的圖形。23中小學(xué)例例 化簡二次曲線方程下x2+4xy+4y2+12x-y+1=0,寫出坐標(biāo)變換公式并畫出它的圖形。解解 由于I2=14-22=0,曲線是非中心型的,應(yīng)先轉(zhuǎn)軸后移軸。1、設(shè)旋轉(zhuǎn)角為,則有得 tan =-1/2 或 tan =2取 tan =2(若取 tan =-1/2,同樣可將原方程化簡),則有:cos =1/51/2,sin=2/51/2 2、得轉(zhuǎn)軸公式為24中小學(xué)代入原方程化簡整理得轉(zhuǎn)軸后的新方程為配方得:3、再做移軸變換曲線方程就化為最簡形式4、寫成標(biāo)準(zhǔn)方程為:yx 5225中小學(xué) 這是一條拋物線.它的頂點(diǎn)是新坐標(biāo)系O-xy 的原點(diǎn),原方程的圖形可以根據(jù)它在坐標(biāo)系O-xy 中的標(biāo)準(zhǔn)方程作出,如圖 所示.將移軸公式代入轉(zhuǎn)軸公式,得坐標(biāo)變換公式為 作圖要點(diǎn):坐標(biāo)系O-xy旋轉(zhuǎn)角tan2成O-xy,再把坐標(biāo)系O-xy 平移,得到O-xy.在新坐標(biāo)系O-xy 中可根據(jù)拋物線的標(biāo)準(zhǔn)方程作圖.為了看出曲線在原坐標(biāo)系中的位置,作圖時(shí)需要將新舊坐標(biāo)系同時(shí)畫出.11(2),5512(2).55xxyyxy26中小學(xué)例例 化簡二次曲線方程 2x2+xy-3y2-13x-2y+21=0解解 計(jì)算得I2 0。1 實(shí)橢圓:a330,a11 a330;3 點(diǎn)橢圓:a33=0。28中小學(xué)()雙曲型雙曲型:I2=a11a220。4 雙曲線:a330;5 兩條相交直線:a33=0。對于非中心型曲線也稱為拋物型曲線,通過轉(zhuǎn)軸消去交叉項(xiàng),再對轉(zhuǎn)軸后的方程“配方”,曲線的方程可化為標(biāo)準(zhǔn)方程 或按照系數(shù)情況分為 29中小學(xué)()拋物型拋物型:I2=0,a11=0,a220。6 拋物線:a130;7 一對平行的直線:a13=0,a22 a33 0 虛橢圓 點(diǎn)橢圓雙曲型:I20 雙曲線 一對相交直線拋物型:I2=0.拋物線 一對平行直線 一對虛平行線 一對重合直線22221,xyab22221,xyab22220,xyab22.ypx21.y 20.y 21.y 22221,xyab 22220,xyabEnd31中小學(xué)

注意事項(xiàng)

本文(一般二次曲線的化簡與分類【青苗教育】)為本站會員(8**)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!