八年級數(shù)學下學期期中試卷(含解析) 新人教版38
-
資源ID:11763278
資源大?。?span id="wwlnvef" class="font-tahoma">229.50KB
全文頁數(shù):16頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
八年級數(shù)學下學期期中試卷(含解析) 新人教版38
2015-2016學年浙江省杭州市蕭山區(qū)戴村片八年級(下)期中數(shù)學試卷一、仔細選一選(本題有10小題,每小題3分,共30分)1下列計算正確的是()ABCD2下列圖形既是軸對稱圖形又是中心對稱圖形的是()ABCD3下列方程中,是一元二次方程的為()Ax2+3x=0B2x+y=3CDx(x2+2)=04用配方法將方程x2+6x11=0變形,正確的是()A(x3)2=20B(x3)2=2C(x+3)2=2D(x+3)2=205下列說法不正確的是()A有兩組對邊分別平行的四邊形是平行四邊形B平行四邊形的對角線互相平分C平行四邊形的對角互補,鄰角相等D平行四邊形的對邊平行且相等6一個多邊形的內角和等于外角和的一半,那么這個多邊形是()A三角形B四邊形C五邊形D六邊形7把一元二次方程(1x)(2x)=3x2化成一般形式ax2+bx+c=0(a0)其中a、b、c分別為()A2、3、1B2、3、1C2、3、1D2、3、18用反證法證明命題“三角形中必有一個內角小于或等于60”時,首先應該假設這個三角形中()A有一個內角小于60B每一個內角都小于60C有一個內角大于60D每一個內角都大于609若=12x,則x的取值范圍是()AxBxCxDx10如圖,水庫大壩截面的迎水坡AD的坡比為4:3,背水坡BC的坡比為1:2,大壩高DE=20m,壩頂寬CD=10m,則下底AB的長為()A55mB60mC65mD70m三、認真填一填(本題有6個小題,每小題4分,共24分)11當x=5時,二次根式的值為12某組數(shù)據(jù)的方差計算公式為S2= (x12)2+(x22)2+(x82)2,則該組數(shù)據(jù)的樣本容量是,該組數(shù)據(jù)的平均數(shù)是13在ABCD中,若A+C=270,則B=14請把命題“有兩個角相等的三角形是等腰三角形”改寫成“如果,那么”的表述形式:15若(x2+y2)(x2+y21)=12,則x2+y2=16觀察下列等式:,請你從上述等式中找出規(guī)律,并利用這一規(guī)律計算(+)(+)=三、全面答一答(本題有7個小題,共66分)17計算:(1);(2)18選擇適當?shù)姆椒ń庀铝幸辉畏匠蹋海?)(x3)225=0(2)x(x+4)=x+419已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(1)求證:四邊形EBFD是平行四邊形;(2)若AD=AE=2,A=60,求四邊形EBFD的周長20在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如圖()求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);()根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動?212014年某市政府共投資2億元人民幣建設了廉租房8萬平方米,預計到2016年底三年共累計投資9.5億元人民幣建設廉租房,若在這兩年內每年投資的增長率相同,且設這個增長率為x(1)2015年的投資額為億元,2016年的投資額為億元;(用含x的代數(shù)式表示)(2)求每年市政府投資的增長率22如圖,請用三種不同方法將平行四邊形ABCD分割成四個面積相等的三角形(作圖工具不限,保留作圖痕跡,不寫作法)23如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設長方形地面,請觀察下列圖形,并解答有關問題:(1)鋪設地面所用瓷磚的總塊數(shù)為(用含n的代數(shù)式表示,n表示第n個圖形);(2)按上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;(3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明2015-2016學年浙江省杭州市蕭山區(qū)戴村片八年級(下)期中數(shù)學試卷參考答案與試題解析一、仔細選一選(本題有10小題,每小題3分,共30分)1下列計算正確的是()ABCD【考點】實數(shù)的運算【分析】根據(jù)平方根的意義與實數(shù)的加減運算即可求得答案【解答】解:A、無意義,故此選項錯誤;B、3+=2,故此選項正確;C、32=,故此選項錯誤;D、=6,故此選項錯誤故選B【點評】此題考查了實數(shù)的運算與平方根的意義題目比較簡單,解題要細心2下列圖形既是軸對稱圖形又是中心對稱圖形的是()ABCD【考點】中心對稱圖形;軸對稱圖形【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解【解答】解:(A)、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;(B)、是軸對稱圖形,也是中心對稱圖形,故本選項正確;(C)、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;(D)、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤故選B【點評】此題考查了軸對稱及中心對稱圖形的判斷,解答本題的關鍵是掌握中心對稱圖形與軸對稱圖形的概念,屬于基礎題3下列方程中,是一元二次方程的為()Ax2+3x=0B2x+y=3CDx(x2+2)=0【考點】一元二次方程的定義【分析】本題根據(jù)一元二次方程的定義解答一元二次方程必須滿足四個條件:(1)含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)二次項系數(shù)不為0;(4)是整式方程由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案【解答】解:A、符合一元二次方程定義,正確;B、含有兩個未知數(shù),錯誤;C、不是整式方程,錯誤;D、未知數(shù)的最高次數(shù)是3,錯誤故選A【點評】判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2這是一個需要識記的內容4用配方法將方程x2+6x11=0變形,正確的是()A(x3)2=20B(x3)2=2C(x+3)2=2D(x+3)2=20【考點】解一元二次方程-配方法【分析】在本題中,把常數(shù)項11移項后,應該在左右兩邊同時加上一次項系數(shù)6的一半的平方【解答】解:把方程x2+6x11=0的常數(shù)項移到等號的右邊,得到x2+6x=11,方程兩邊同時加上一次項系數(shù)一半的平方,得到x2+6x+9=11+9,配方得(x+3)2=20故選:D【點評】本題考查了配方法解一元二次方程配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù)5下列說法不正確的是()A有兩組對邊分別平行的四邊形是平行四邊形B平行四邊形的對角線互相平分C平行四邊形的對角互補,鄰角相等D平行四邊形的對邊平行且相等【考點】平行四邊形的判定與性質【分析】根據(jù)平行四邊形的判定定理與性質進行判斷【解答】解:A、平行四邊形的判定定理:有兩組對邊分別平行的四邊形是平行四邊形,故本選項正確;B、平行四邊形的性質:平行四邊形的對角線互相平分,故本選項正確;C、平行四邊形的對角相等,鄰角互補,故本選項錯誤;D、平行四邊形的性質:平行四邊形的對邊平行且相等,故本選項正確;故選:C【點評】本題考查了平行四邊形的判定與性質平行四邊形的五種判定方法分別是:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)對角線互相平分的四邊形是平行四邊形6一個多邊形的內角和等于外角和的一半,那么這個多邊形是()A三角形B四邊形C五邊形D六邊形【考點】多邊形內角與外角【分析】多邊形的外角和是360度,多邊形的內角和等于外角和的一半,則多邊形的內角和是180度,則這個多邊形一定是三角形【解答】解:多邊形的外角和是360度,又內角和等于外角和的一半,多邊形的內角和是180度,這個多邊形是三角形故本題選A【點評】考查了多邊形的外角和定理,是一個基本的題目7把一元二次方程(1x)(2x)=3x2化成一般形式ax2+bx+c=0(a0)其中a、b、c分別為()A2、3、1B2、3、1C2、3、1D2、3、1【考點】一元二次方程的一般形式【分析】首先將已知方程進行整理,化為一元二次方程的一般形式,再來確定a、b、c的值【解答】解:原方程可整理為:2x23x1=0,a=2,b=3,c=1;故選B【點評】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a0),在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項當所給方程不是一般形式時,一定要化為一般形式,再確定各項系數(shù)的值8用反證法證明命題“三角形中必有一個內角小于或等于60”時,首先應該假設這個三角形中()A有一個內角小于60B每一個內角都小于60C有一個內角大于60D每一個內角都大于60【考點】反證法【分析】熟記反證法的步驟,然后進行判斷即可【解答】解:用反證法證明“三角形中必有一個內角小于或等于60”時,應先假設三角形中每一個內角都不小于或等于60,即每一個內角都大于60故選:D【點評】本題結合角的比較考查反證法,解此題關鍵要懂得反證法的意義及步驟反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立在假設結論不成立時要注意考慮結論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定9若=12x,則x的取值范圍是()AxBxCxDx【考點】二次根式的性質與化簡【分析】由于0,所以12x0,解不等式即可【解答】解: =12x,12x0,解得x故選B【點評】算術平方根是非負數(shù),這是解答此題的關鍵10如圖,水庫大壩截面的迎水坡AD的坡比為4:3,背水坡BC的坡比為1:2,大壩高DE=20m,壩頂寬CD=10m,則下底AB的長為()A55mB60mC65mD70m【考點】解直角三角形的應用-坡度坡角問題【分析】利用坡比的比值關系,求出AE與BF的長度即可得出下底的長【解答】解:DE=20m,DE:AE=4:3,AE=15m,CF=DE=20m,CF:BF=1:2,BF=40m,AB=AE+EF+BF=15+10+40=65m故選C【點評】本題考查了坡度和坡角的知識,解答本題的關鍵是根據(jù)坡比和已知條件求出三角形的邊長三、認真填一填(本題有6個小題,每小題4分,共24分)11當x=5時,二次根式的值為4【考點】二次根式的定義【分析】直接將x=5代入求出即可【解答】解:x=5,=4,故答案為4,【點評】此題是二次根式的定義,解本題的關鍵是會化簡二次根式12某組數(shù)據(jù)的方差計算公式為S2= (x12)2+(x22)2+(x82)2,則該組數(shù)據(jù)的樣本容量是8,該組數(shù)據(jù)的平均數(shù)是2【考點】方差;總體、個體、樣本、樣本容量;算術平均數(shù)【分析】樣本方差S2= (x1)2+(x2)2+(xn)2,其中n是這個樣本的容量,是樣本的平均數(shù)利用此公式直接求解【解答】解:由于S2= (x12)2+(x22)2+(x82)2,所以該組數(shù)據(jù)的樣本容量是8,該組數(shù)據(jù)的平均數(shù)是2故填8,2【點評】熟練記住公式:S2= (x1)2+(x2)2+(xn)2中各個字母所代表的含義13在ABCD中,若A+C=270,則B=45【考點】平行四邊形的性質【分析】根據(jù)平行四邊形的性質可知,平行四邊形的對角相等,鄰角互補,再根據(jù)已知即可求解【解答】解:在ABCD中,A=C,若A+C=270,則A=135,B=180A=45故答案為:45【點評】本題考查平行四邊形的性質,在應用平行四邊形的性質解題時,要根據(jù)具體問題,有選擇的使用,避免混淆性質,以致錯用性質14請把命題“有兩個角相等的三角形是等腰三角形”改寫成“如果,那么”的表述形式:如果一個三角形中有兩個角相等,那么這個三角形是等腰三角形【考點】命題與定理【分析】找到這個命題的條件即為題設,用如果引起,再找到這個命題的結論,用那么引起即可【解答】解:命題“有兩個角相等的三角形是等腰三角形”改寫成“如果,那么”的表述形式:如果一個三角形中有兩個角相等,那么這個三角形是等腰三角形故答案為如果一個三角形中有兩個角相等,那么這個三角形是等腰三角形【點評】本題考查了命題和證明,在學生眼里這是難點,要熟練掌握15若(x2+y2)(x2+y21)=12,則x2+y2=4【考點】換元法解一元二次方程【分析】先設x2+y2=t,則方程即可變形為t2t12=0,解方程即可求得t即x2+y2的值【解答】解:設t=x2+y2(t0),則原方程可化為:t(t1)12=0,即t2t12=0,(t4)(t+3)=0,t=4,或t=3(不合題意,舍去),x2+y2=4故答案是:4【點評】本題考查了換元法解一元二次方程注意整體換元思想的運用,兩邊開平方,注意x2+y2是一個非負數(shù)16觀察下列等式:,請你從上述等式中找出規(guī)律,并利用這一規(guī)律計算(+)(+)=4020【考點】分母有理化【分析】先將第一個括號內的各式分母有理化,此時發(fā)現(xiàn)除第二項和倒數(shù)第二項外,其他各項的和為0,由此可求出第一個括號內代數(shù)式的值,進而可根據(jù)平方差公式求出整個代數(shù)式的值【解答】解:原式=2(+)(+)=2()(+)=22010=4020故答案為:4020【點評】本題考查了分母有理化的知識,能夠發(fā)現(xiàn)式子中的規(guī)律是解答此題的關鍵三、全面答一答(本題有7個小題,共66分)17計算:(1);(2)【考點】二次根式的加減法【分析】(1)先將二次根式化成最簡二次根式,再合并同類二次根式即可;(2)先乘方、化簡二次根式,再合并同類二次根式【解答】解:(1)原式=4=;(2)原式=62=6【點評】二次根式的加減實際就是合并同類二次根式,一般需要先化為最簡二次根式,再合并18選擇適當?shù)姆椒ń庀铝幸辉畏匠蹋海?)(x3)225=0(2)x(x+4)=x+4【考點】解一元二次方程-因式分解法;解一元二次方程-直接開平方法【分析】(1)將方程(x3)225=0移項得(x3)2=25,然后再根據(jù)直接開平方法求解;(2)先移項,使方程的右邊化為零,然后通過提取公因式x+4對等式的左邊進行因式分解【解答】解:(1)(x3)225=0,移項得(x3)2=25,x3=5,即x3=5或x3=5,解得x1=8,x2=2;(2)移項得x(x+4)(x+4)=0,(x1)(x+4)=0,x1=0或x+4=0,解得x1=1,x2=4【點評】本題考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步驟:移項,使方程的右邊化為零;將方程的左邊分解為兩個一次因式的乘積;令每個因式分別為零,得到兩個一元一次方程;解這兩個一元一次方程,它們的解就都是原方程的解也考查了用直接開方法求一元二次方程的解19已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(1)求證:四邊形EBFD是平行四邊形;(2)若AD=AE=2,A=60,求四邊形EBFD的周長【考點】平行四邊形的判定與性質;三角形中位線定理【分析】1、在ABCD中,AB=CD,ABCD,又E、F分別是邊AB、CD的中點,所以BE=CF,因此四邊形EBFD是平行四邊形2、由AD=AE=2,A=60知ADE是等邊三角形,又E、F分別是邊AB、CD的中點,四邊形EBFD是平行四邊形,所以EB=BF=FD=DE=2,四邊形EBFD是平行四邊形的周長是2+2+2+2=8【解答】解:(1)在ABCD中,AB=CD,ABCDE、F分別是AB、CD的中點,BE=DF四邊形EBFD是平行四邊形(2)AD=AE,A=60,ADE是等邊三角形DE=AD=2,又BE=AE=2,由(1)知四邊形EBFD是平行四邊形,四邊形EBFD的周長=2(BE+DE)=8【點評】本題考查了平行四邊形的判定與性質,熟練掌握性質定理和判定定理是解題的關鍵平行四邊形的五種判定方法與平行四邊形的性質相呼應,每種方法都對應著一種性質,在應用時應注意它們的區(qū)別與聯(lián)系20在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如圖()求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);()根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動?【考點】條形統(tǒng)計圖;用樣本估計總體;加權平均數(shù);中位數(shù);眾數(shù)【分析】()根據(jù)加權平均數(shù)的公式可以計算出平均數(shù);根據(jù)眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù),即可求出眾數(shù)與中位數(shù);()利用樣本估計總體的方法,用樣本中的平均數(shù)1200即可【解答】解:()觀察條形統(tǒng)計圖,可知這組樣本數(shù)據(jù)的平均數(shù)是: =3.3次,則這組樣本數(shù)據(jù)的平均數(shù)是3.3次在這組樣本數(shù)據(jù)中,4出現(xiàn)了18次,出現(xiàn)的次數(shù)最多,這組數(shù)據(jù)的眾數(shù)是4次將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處在中間的兩個數(shù)都是3, =3次,這組數(shù)據(jù)的中位數(shù)是3次;()這組樣本數(shù)據(jù)的平均數(shù)是3.3次,估計全校1200人參加活動次數(shù)的總體平均數(shù)是3.3次,3.31200=3960該校學生共參加活動約為3960次【點評】本題考查的是條形統(tǒng)計圖,平均數(shù),眾數(shù),中位數(shù),以及樣本估計總體讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息,掌握眾數(shù)、中位數(shù)的定義是解決問題的關鍵,條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù)212014年某市政府共投資2億元人民幣建設了廉租房8萬平方米,預計到2016年底三年共累計投資9.5億元人民幣建設廉租房,若在這兩年內每年投資的增長率相同,且設這個增長率為x(1)2015年的投資額為2(1+x)億元,2016年的投資額為2(1+x)2億元;(用含x的代數(shù)式表示)(2)求每年市政府投資的增長率【考點】一元二次方程的應用【分析】(1)根據(jù)設這個增長率為x,再利用2014年某市政府共投資2億元人民幣建設了廉租房,在這兩年內每年投資的增長率相同可表示出2015年和2016年的投資金額;(2)利用(1)中所求,進而表示出三年共累計投資,即可得出等式求出答案【解答】解:(1)2015年的投資額為:2(1+x)億元,2016年的投資額為:2(1+x)2億元;故答案為:2(1+x);2(1+x)2;(2)由題意可得:2+2(1+x)+2(1+x)2=9.5,解得:x=0.5或x=3.5(不符實際,舍去)答:每年市政府投資的增長率為50%【點評】此題主要考查了一元二次方程的應用,根據(jù)題意正確表示出每年的投資金額是解題關鍵22如圖,請用三種不同方法將平行四邊形ABCD分割成四個面積相等的三角形(作圖工具不限,保留作圖痕跡,不寫作法)【考點】作圖應用與設計作圖;平行四邊形的性質【分析】連接對角線AC、BD,可以把平行四邊形分成四個面積相等的三角形;連接AC,再作出ABC和ACD的中線,根據(jù)中線可以把三角形分成兩個面積相等的部分畫出圖形;連接BD,再作出ABD和BCD的中線,根據(jù)中線可以把三角形分成兩個面積相等的部分畫出圖形;【解答】解:如圖所示:【點評】此題主要考查了作圖與應用作圖,關鍵是掌握三角形的中線可以把三角形的面積分成相等的兩部分23如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設長方形地面,請觀察下列圖形,并解答有關問題:(1)鋪設地面所用瓷磚的總塊數(shù)為n2+5n+6或(n+2)(n+3);(用含n的代數(shù)式表示,n表示第n個圖形);(2)按上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;(3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明【考點】一元二次方程的應用;規(guī)律型:圖形的變化類【分析】(1)第一個圖形用的正方形的個數(shù)=34=12,第二個圖形用的正方形的個數(shù)=45=20,第三個圖形用的正方形的個數(shù)=56=30以此類推,第n個圖形用的正方形的個數(shù)=(n+2)(n+3)個;(2)根據(jù)題意可得(n+2)(n+3)=506,解關于n的一元二次方程即可;(3)第一個圖形中白色瓷塊有12=2,黑色瓷塊=25=10,第二個圖形中白色瓷塊有23=6,黑色瓷塊=27=14,第三個圖形中白色瓷塊有34=12,黑色瓷塊=29=18那么依此類推第n個圖形中有白色瓷塊=n(n+1),黑色瓷塊=2(2n+3),根據(jù)題意可得n(n+1)=2(2n+3),解關于n的方程即可【解答】解:(1)第一個圖形用的正方形的個數(shù)=34=12,第二個圖形用的正方形的個數(shù)=45=20,第三個圖形用的正方形的個數(shù)=56=30以此類推,第n個圖形用的正方形的個數(shù)=(n+2)(n+3)個;故答案為:n2+5n+6或(n+2)(n+3);(2)根據(jù)題意得:n2+5n+6=506,解得n1=20,n2=25(不符合題意,舍去);(3)根據(jù)題意得:n(n+1)=2(2n+3),解得n=(不符合題意,舍去),不存在黑瓷磚與白瓷磚塊數(shù)相等的情形【點評】本題考查了一元二次方程的應用,解題的關鍵主要是尋找規(guī)律,還使用了解一元二次方程的知識