2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課時(shí)規(guī)范練34 歸納與類比 理 北師大版
課時(shí)規(guī)范練34歸納與類比基礎(chǔ)鞏固組1.(2018河北衡水棗強(qiáng)中學(xué)期中,7)下列三句話按“三段論”模式排列順序正確的是()y=cos x(xR)是三角函數(shù);三角函數(shù)是周期函數(shù);y=cos x(xR)是周期函數(shù).A.B.C.D.2.(2018安徽合肥一中沖刺,7)觀察下圖:12343456745678910則第()行的各數(shù)之和等于2 0172.A.2 010B.2 018C.1 005D.1 0093.(2018河北辛集中學(xué)月考,10)古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:他們研究過圖中的1,3,6,10,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù),由以上規(guī)律,則這些三角形數(shù)從小到大形成一個(gè)數(shù)列an,那么a10的值為()A.45B.55C.65D.664.(2018吉林梅河口五中期中,9)在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就座,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好,現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是()小林小方小馬體育興趣愛好籃球,網(wǎng)球,羽毛球足球,排球,跆拳道籃球,棒球,乒乓球小張小李小周體育興趣愛好擊劍,網(wǎng)球,足球棒球,排球,羽毛球跆拳道,擊劍,自行車A.小方B.小張C.小周D.小馬5.(2018黑龍江哈爾濱二模,9)對(duì)大于或等于2的自然數(shù)的正整數(shù)冪運(yùn)算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.根據(jù)上述分解規(guī)律,若m2=1+3+5+11,n3的分解中最小的正整數(shù)是21,則m+n=()A.10B.11C.12D.136.(2018河南信陽(yáng)一中模擬,9)若“*”表示一種運(yùn)算,滿足如下關(guān)系:(1)1*1=1;(2)(n+1)*1=3(n*1)(nN+),則n*1=()A.3n-2B.3n+1C.3nD.3n-17.(2018河北衡水中學(xué)五模,8)下面推理過程中使用了類比推理方法,其中推理正確的個(gè)數(shù)是()“數(shù)軸上兩點(diǎn)間距離公式為|AB|=,平面上兩點(diǎn)間距離公式為|AB|=”,類比推出“空間內(nèi)兩點(diǎn)間的距離公式為|AB|=”;“代數(shù)運(yùn)算中的完全平方公式(a+b)2=a2+2a·b+b2”類比推出“向量中的運(yùn)算(a+b)2=a2+2a·b+b2仍成立”;“平面內(nèi)兩條不重合的直線不平行就相交”類比到空間“空間內(nèi)兩條不重合的直線不平行就相交”也成立;“圓x2+y2=1上點(diǎn)P(x0,y0)處的切線方程為x0x+y0y=1”,類比推出“橢圓=1(a>b>0)上點(diǎn)P(x0,y0)處的切線方程為=1”.A.1B.2C.3D.48.(2018福建三明一中期末,11)觀察圖形:則第30個(gè)圖形比第27個(gè)圖形中的“”多()A.59顆B.60顆C.87顆D.89顆9.(2018河北衡水一模,14)已知自主招生考試中,甲、乙、丙三人都恰好報(bào)考了清華大學(xué)、北京大學(xué)中的某一所大學(xué),三人分別給出了以下說法:甲說:“我報(bào)考了清華大學(xué),乙也報(bào)考了清華大學(xué),丙報(bào)考了北京大學(xué).”乙說:“我報(bào)考了清華大學(xué),甲說得不完全對(duì).”丙說:“我報(bào)考了北京大學(xué),乙說得對(duì).”已知甲、乙、丙三人中恰好有1人說得不對(duì),則報(bào)考了北京大學(xué)的是. 10.設(shè)ABC的三邊長(zhǎng)分別為a,b,c,ABC的面積為S,內(nèi)切圓半徑為r,則r=;類比這個(gè)結(jié)論可知,四面體ABCD的四個(gè)面的面積分別為S1,S2,S3,S4,四面體ABCD的體積為V,內(nèi)切球半徑為R,則R=. 11.(2018中山模擬,14)在ABC中,不等式成立;在凸四邊形ABCD中,不等式成立;在凸五邊形ABCDE中,不等式成立依此類推,在凸n邊形A1A2An中,不等式+成立. 12.(2018河北保定模擬,17)數(shù)列an的前n項(xiàng)和記為Sn,已知a1=1,an+1=Sn(nN+).證明:(1)數(shù)列是等比數(shù)列;(2)Sn+1=4an.綜合提升組13.(2018河南中原名校五聯(lián),10)老師在四個(gè)不同的盒子里面放了4張不同的撲克牌,分別是紅桃A,梅花A,方片A以及黑桃A,讓小明、小紅、小張、小李四個(gè)人進(jìn)行猜測(cè):小明說:第1個(gè)盒子里面放的是梅花A,第3個(gè)盒子里面放的是方片A;小紅說:第2個(gè)盒子里面放的是梅花A,第3個(gè)盒子里放的是黑桃A;小張說:第4個(gè)盒子里面放的是黑桃A,第2個(gè)盒子里面放的是方片A;小李說:第4個(gè)盒子里面放的是紅桃A,第3個(gè)盒子里面放的是方片A;老師說:“小明、小紅、小張、小李,你們都只說對(duì)了一半.”則可以推測(cè),第4個(gè)盒子里裝的是()A.紅桃A或黑桃AB.紅桃A或梅花AC.黑桃A或方片AD.黑桃A或梅花A14.(2018湖南岳陽(yáng)一模,9)將棱長(zhǎng)相等的正方體按下圖所示的形狀擺放,從上往下依次為第1層,第2層,第3層,則第2 018層正方體的個(gè)數(shù)共有()A.2 018B.4 028C.2 037 171D.2 009 01015.如圖,我們知道,圓環(huán)也可以看作線段AB繞圓心O旋轉(zhuǎn)一周所形成的平面圖形,又圓環(huán)的面積S=(R2-r2)=(R-r)×2×.所以,圓環(huán)的面積等于以線段AB=R-r為寬,以AB中點(diǎn)繞圓心O旋轉(zhuǎn)一周所形成的圓的周長(zhǎng)2×為長(zhǎng)的矩形面積.請(qǐng)你將上述想法拓展到空間,并解決下列問題:若將平面區(qū)域M=(x,y)|(x-d)2+y2r2(其中0<r<d)繞y軸旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的體積是. 創(chuàng)新應(yīng)用組16.(2018河北衡水模擬,14)將給定的一個(gè)數(shù)列an:a1,a2,a3,按照一定的規(guī)則依順序用括號(hào)將它分組,則可以得到以組為單位的序列.如在上述數(shù)列中,我們將a1作為第一組,將a2,a3作為第二組,將a4,a5,a6作為第三組,依次類推,第n組有n個(gè)元素(nN+),即可得到以組為單位的序列:(a1),(a2,a3),(a4,a5,a6),我們通常稱此數(shù)列為分群數(shù)列.其中第1個(gè)括號(hào)稱為第1群,第2個(gè)括號(hào)稱為第2群,第3個(gè)數(shù)列稱為第3群,第n個(gè)括號(hào)稱為第n群,從而數(shù)列an稱為這個(gè)分群數(shù)列的原數(shù)列.如果某一個(gè)元素在分群數(shù)列的第m個(gè)群中,且從第m個(gè)括號(hào)的左端起是第k個(gè),則稱這個(gè)元素為第m群中的第k個(gè)元素.已知數(shù)列1,1,3,1,3,9,1,3,9,27,將數(shù)列分群,其中,第1群為(1),第2群為(1,3),第3群為(1,3,32),以此類推.設(shè)該數(shù)列前n項(xiàng)和N=a1+a2+an,若使得N>14 900成立的最小an位于第m群,則m=()A.11B.10C.9D.817. (2018黑龍江仿真模擬四,14)已知命題:在平面直角坐標(biāo)系xOy中,橢圓=1(a>b>0),ABC的頂點(diǎn)B在橢圓上,頂點(diǎn)A,C分別為橢圓的左、右焦點(diǎn),橢圓的離心率為e,則,現(xiàn)將該命題類比到雙曲線中,ABC的頂點(diǎn)B在雙曲線上,頂點(diǎn)A、C分別為雙曲線的左、右焦點(diǎn),設(shè)雙曲線的方程為=1(a>0,b>0),雙曲線的離心率為e,則有. 參考答案課時(shí)規(guī)范練34歸納與類比1.B根據(jù)“三段論”:“大前提”“小前提”“結(jié)論”可知:y=cos x(xR)是三角函數(shù)是“小前提”;三角函數(shù)是周期函數(shù)是“大前提”;y=cos x(xR)是周期函數(shù)是“結(jié)論”.故“三段論”模式排列順序?yàn)?故選B.2.D由圖形知,第一行各數(shù)和為1;第二行各數(shù)和為9=32;第三行各數(shù)和為25=52;第四行各數(shù)和為49=72,第n行個(gè)數(shù)之和為(2n-1)2,令(2n-1)2=2 01722n-1=2 017,解得n=1 009,故選D.3.Ba1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4,故a10=1+2+3+4+10=55,故選B.4.A依據(jù)題意可得從16號(hào)依次為小林、小馬、小李、小方、小周、小張,則4號(hào)位置上坐的是小方,故選A.5.Bm2=1+3+5+11=×6=36,m=6,23=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,n3的分解中最小的數(shù)是21,n3=53,n=5.m+n=6+5=11,故選B.6.D由題設(shè):1*1=1,(n+1)*1=3(n*1),則n*1=3(n-1)*1)=3×3(n-2)*1)=3n-1(1*1)=3n-1.故選D.7.C對(duì)于,根據(jù)空間內(nèi)兩點(diǎn)間距離公式可知,類比正確;對(duì)于,(a+b)2=(a+b)·(a+b)=a2+a·b+b·a+b2=a2+2a·b+b2,類比正確;對(duì)于,在空間內(nèi)不平行的兩條直線,有相交和異面兩種情況,類比錯(cuò)誤;對(duì)于,橢圓+=1(a>b>0)上點(diǎn)P(x0,y0)處的切線方程為+=1,為真命題,綜合上述,可知正確個(gè)數(shù)為3個(gè),故選C.8.C設(shè)第n個(gè)圖形“”的個(gè)數(shù)為an,則a1=1,a2=1+2=3,a3=1+2+3=6,an=1+2+n=,第30個(gè)圖形比第27個(gè)圖形中的“”多的個(gè)數(shù)為:-=87.故選C.9.甲、丙若甲說得不對(duì),則乙、丙說得對(duì),即乙一定報(bào)考了清華大學(xué),丙一定報(bào)考了北京大學(xué),甲只可能報(bào)考了北京大學(xué).若乙、丙說得不對(duì),則得出與“甲、乙、丙三人中恰好有1人說得不對(duì)”矛盾,所以報(bào)考了北京大學(xué)的是甲、丙.所以填甲、丙.10.三角形的面積類比四面體的體積,三角形的邊長(zhǎng)類比四面體四個(gè)面的面積,內(nèi)切圓半徑類比內(nèi)切球的半徑,二維圖形中的“2”類比三維圖形中的“3”,得R=.11.(nN+,n3)+=,+=,+=,+(nN+,n3).12.證明 (1)an+1=Sn+1-Sn,an+1=Sn,(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.=2·,又=10,(小前提)故是以1為首項(xiàng),2為公比的等比數(shù)列.(結(jié)論)(2)由(1)可知=4·(n2),Sn+1=4(n+1)·=4··Sn-1=4an(n2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)對(duì)于任意正整數(shù)n,都有Sn+1=4an.(結(jié)論)13.A因?yàn)樗膫€(gè)人都只猜對(duì)了一半,故有以下兩種可能:(1)當(dāng)小明猜對(duì)第1個(gè)盒子里面放的是梅花A時(shí),第3個(gè)盒子里面放的不是方片A,則小李猜對(duì)第4個(gè)盒子里面放的是紅桃A,小張猜對(duì)第2個(gè)盒子里面放的是方片A,小紅猜對(duì)第3個(gè)盒子里面放的是黑桃A;(2)若小明猜對(duì)的是第3個(gè)盒子里面放的是方片A,則第1個(gè)盒子里面放的不是梅花A,小紅猜對(duì)第2個(gè)盒子里面放的是梅花A,小張猜對(duì)第4個(gè)盒子里面放的是黑桃A,小李猜對(duì)第3個(gè)盒子里面放的是方片A,則第1個(gè)盒子只能是紅桃A,故選A.14.C設(shè)第n層正方體的個(gè)數(shù)為an,則a1=1,an-an-1=n,所以an-a1=2+3+n,即an=1+2+3+n=,n2,故a2 018=1 009×2 019=2 037 171,故選C.15.22r2d平面區(qū)域M的面積為r2,由類比知識(shí)可知:平面區(qū)域M繞y軸旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體為實(shí)心的車輪內(nèi)胎,旋轉(zhuǎn)體的體積等于以圓(面積為r2)為底,以O(shè)為圓心、d為半徑、圓的周長(zhǎng)2d為高的圓柱的體積,所以旋轉(zhuǎn)體的體積V=r2×2d=22r2d.16.B由題意得到該數(shù)列的前r組共有1+2+3+4+r=個(gè)元素,其和為S=1+(1+3)+(1+3+32)+(1+3+32+3r-1)=,則r=9時(shí),S(45)=14 757,r=10,S(55)=44 281>14 900,故使得N>14 900成立的最小值a位于第10群.故答案為B.點(diǎn)睛 這個(gè)題目考查的是新定義題型,屬于數(shù)列中的歸納推理求和問題;對(duì)于這類題目,可以先找一些特殊情況,總結(jié)一下規(guī)律,再進(jìn)行推廣,得到遞推關(guān)系,或者直接從變量較小的情況開始?xì)w納得到遞推關(guān)系.17.=將該命題類比到雙曲線中,因?yàn)锳BC的頂點(diǎn)B在雙曲線-=1(a>0,b>0)上,頂點(diǎn)A、C分別是雙曲線的左、右焦點(diǎn),所以有|BA|-|BC|=2a,所以=,由正弦定理可得=,所以=,故答案為=.8