歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

化學(xué)工程與工藝畢業(yè)論文1.doc

  • 資源ID:116485409       資源大小:339.52KB        全文頁數(shù):25頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

化學(xué)工程與工藝畢業(yè)論文1.doc

畢 業(yè) 論 文(2011 屆)題 目 煤基水煤氣變換工段模擬 學(xué) 院 化學(xué)化工學(xué)院 專 業(yè) 化學(xué)工程與工藝 年 級 07級化工(3班) 學(xué)生學(xué)號 12007240354 學(xué)生姓名 張 金 華 指導(dǎo)教師 范 輝 2011年 5月9日煤基水煤氣變換工段模擬寧夏大學(xué)化學(xué)化工學(xué)院 化學(xué)工程與工藝專業(yè)2011屆 張金華摘要:水煤氣變換(the water gas shift,簡稱WGS)反應(yīng)在費-托合成過程、殼牌粉煤氣化和德士古煤氣化中占有重要的角色,廣泛應(yīng)用于合成氨、合成甲醇、制氫和城市煤氣工業(yè)中。利用Aspen Plus化工過程模擬軟件對殼牌粉煤氣化過程中變串低變兩段爐煤氣變換工段進行模擬。通過調(diào)整水蒸汽用量,將出口CO含量降至0.60%(干基)以下,得到最佳水碳比為2.98。通過模擬,對神華煤、天堿煤及沾化煤三種不同煤種氣化的粗合成氣變換結(jié)果進行比較,煤種H/C含量高,氣化產(chǎn)物中H2/CO較高,在變換過程中,要求出口CO含量(干基)小于0.6%時,消耗水蒸汽用量較低。關(guān)鍵詞:CO變換;Aspen plus模擬;煤氣化;Shell氣化工藝Coal based water gas shift section simulationAbstract: coal based water gas shift section is the important part of the C1 process. The shell gasification CO transformation process is simulated by Aspen Plus engineering software. Steam to CO is adjusted to 2.98 in order to export CO content to 0.6%.Compared with the different coal, it shows that Shenhua Coal, Zhanhua coal and Tianjian coal have the different H/C. The more steam is used because the higher H/C of the coal in the water gas shift section. Key words: CO Shift; Aspen Plus simulation; Coal gasification; Shell gasification process 目 錄第一章 緒 論11.1 課題的目的和意義11.2 殼牌粉煤氣化概述11.2.1 煤氣化原理11.2.2煤氣化工藝流程21.3 水煤氣變換反應(yīng)的研究現(xiàn)狀31.3.1 水煤氣變換反應(yīng)的發(fā)展31.3.2 國內(nèi)外水煤氣變換催化劑的研究發(fā)展4第二章 WGS反應(yīng)工業(yè)過程模擬52.1 WGS反應(yīng)原理52.1.1 化學(xué)計量式及熱力學(xué)分析52.1.2 WGS反應(yīng)催化劑52.1.3 WGS反應(yīng)機理52.2 化工過程模擬72.2.1 Aspen plus軟件概述72.2.2 WGS反應(yīng)在德士古氣化法中的應(yīng)用7第三章 殼牌粉煤氣化水煤氣變換工段模擬93.1 變換工藝方案選擇93.2 鈷鉬系寬溫耐硫催化劑的特點93.3 模型物性方法選擇103.4 Aspen Plus軟件模擬過程103.4.1 變換工段模擬103.4.2 模擬結(jié)果與討論13第四章 結(jié) 論16參考文獻17致 謝18 III寧夏大學(xué)本科畢業(yè)論文 第一章 緒 論第一章 緒 論1.1 課題的目的和意義隨著大量煤炭資源的發(fā)掘與開采,能源的開發(fā)與利用變得多樣化,其中煤的氣化占有重要的地位。水煤氣變換(the water gas shift,簡稱WGS)反應(yīng)在費-托合成過程、殼牌粉煤氣化和德士古煤氣化中占有重要的角色,廣泛應(yīng)用于合成氨、合成甲醇、制氫和城市煤氣工業(yè)中。在費-托合成過程中發(fā)生水煤氣變換反應(yīng),大大降低了CO的利用率,在鐵催化劑上,幾乎35(vol)%的CO轉(zhuǎn)化為CO2。因此,為了有選擇性地生成CO2,對費-托合成中的水煤氣變換反應(yīng)進行深入探討是有必要的1;德士古煤氣中的CO、CO2、H2和H2O等的組成不能滿足甲醇合成的需要,必須通過CO變換工段對德士古煤氣進行組成調(diào)整;殼牌氣化生產(chǎn)合成氣中的CO含量遠遠高過德士古等其他氣化工藝,需將CO變換成CO2,同時產(chǎn)生H2,以調(diào)整粗煤氣中CO和H2的含量,滿足甲醇合成裝置對合成氣中氫碳比的要求。因此,本文借助Aspen Plus工程模擬軟件對CO變換工段進行模擬。1.2 殼牌粉煤氣化概述1.2.1 煤氣化原理煤氣化過程是煤炭的一個熱化學(xué)加工過程。它是以煤或煤焦為原料,以氧氣(空氣、富氧或工業(yè)純氧)、水蒸氣作為氣化劑,在高溫高壓下通過化學(xué)反應(yīng)將煤或煤焦中的可燃部分轉(zhuǎn)化為可燃性氣體的工藝過程。氣化時所得的可燃氣體成為煤氣,對于做化工原料用的煤氣一般稱為合成氣(合成氣除了以煤炭為原料外,還可以采用天然氣、重質(zhì)石油組分等為原料),進行氣化的設(shè)備稱為煤氣發(fā)生爐或氣化爐。煤炭氣化包含一系列物理、化學(xué)變化。一般包括熱解和氣化和燃燒四個階段。干燥屬于物理變化,隨著溫度的升高,煤中的水分受熱蒸發(fā)。其他屬于化學(xué)變化,燃燒也可以認為是氣化的一部分。煤在氣化爐中干燥以后,隨著溫度的進一步升高,煤分子發(fā)生熱分解反應(yīng),生成大量揮發(fā)性物質(zhì)(包括干餾煤氣、焦油和熱解水等),同時煤粘結(jié)成半焦。煤熱解后形成的半焦在更高的溫度下與通入氣化爐的氣化劑發(fā)生化學(xué)反應(yīng),生成以一氧化碳、氫氣、甲烷及二氧化碳、氮氣、硫化氫、水等為主要成分的氣態(tài)產(chǎn)物,即粗煤氣。氣化反應(yīng)包括很多的化學(xué)反應(yīng),主要是碳、水、氧、氫、一氧化碳、二氧化碳相互間的反應(yīng),其中碳與氧的反應(yīng)又稱燃燒反應(yīng),提供氣化過程的熱量。主要反應(yīng)有:水蒸氣轉(zhuǎn)化反應(yīng)、水煤氣變換反應(yīng)、部分氧化反應(yīng)、完全氧化(燃燒)反應(yīng)、甲烷化反應(yīng)、Boudouard反應(yīng)。1.2.2煤氣化工藝流程Shell煤氣化工藝模擬流程可以分為以下幾個部分:干燥單元、氣化單元、熱回收單元、濕洗單元、水煤氣變換單元、合成氣冷卻單元、渣水處理單元2,如圖1-1所示。圖1-1 Shell煤氣化工藝模擬流程總圖反應(yīng)器:GIBBS、DECOMP、ADJUST、WGS-1、WGS-2 分離器:SCR-TANK、BW-TANK、CON-TANK冷凝器:SCRUBBER、KO-DRM(1)干燥單元本單元主要模擬煤的干燥過程,含有水分的GFR-COAL經(jīng)過DRYER-1模塊升溫到250。DRYER-2模塊用來分離汽化的水分, COAL-H2O是從煤中干燥出來的水分,COAL2是干燥后的煤。(2)氣化單元本單元包括了DECOMP煤裂解模塊、GIBBS煤氣化爐模塊、GFR-SEP氣化產(chǎn)物分離模塊。DECOMP模塊:由于煤的復(fù)雜結(jié)構(gòu)和組成,在模擬中設(shè)置了一個DECOMP模塊,在實際生產(chǎn)中是不存在DECOMP這個單元,只是為了能在Aspen Plus對煤進行模擬而設(shè)置的,目的是將煤分解,用H2O、N2、O2、S、H2、C等基本組分Elements來表示。DECOMP模塊是根據(jù)煤的元素分析,通過Aspen Plus中的Calculator,用Fortran語言計算出干基組分,用這些組分來表示煤。GIBBS反應(yīng)模塊:對于氣化爐的模擬是本模擬中重要的部分,這里選用Aspen Plus中的RGIBBS模塊,它是一個基于GIBBS自由能最小化原理的反應(yīng)器。對煤氣化系統(tǒng),考慮其中包含的元素為C,H,O,N和S,包含的組分為:H2O,N2,O2,S,H2,C(固體),CO,CO2,H2S,COS,CH4,NH3,HCN共13個,體系達到化學(xué)反應(yīng)熱平衡的判據(jù)式是體系的GIBBS自由能達到極小值。這里采用的操作條件是溫度2840(約1550),壓力為600psi(約4.137Mpa)。GFR-SEP分離模塊:該單元是一個理想分離器,模塊來自Aspen Plus中的SEP模塊。其功能是將氣化產(chǎn)物分離成氣體和固體兩相。合成氣進入到后續(xù)的熱回收單元,爐渣SLAG-1則進入到渣水處理單元。(3)熱回收單元SHELL工藝采用廢鍋流程回收熱量,2800的高溫粗合成氣SYNG-1經(jīng)過兩個換熱器SC-1,SC-2,冷卻到464,回收高位熱能(約為2500MMBtu/hr),再經(jīng)過DSR,采用Aspen Plus中的SEP模塊,模擬SHELL氣化中的陶瓷過濾器除塵。(4)濕洗單元殼牌煤氣化工藝采用干法除塵與濕法除塵相結(jié)合,粗合成氣在經(jīng)過DSR模塊初步除塵后,進入到濕法洗滌系統(tǒng)脫除煤氣中的NH3,SO2和HCN等有害組分。首先在水洗塔中進行洗滌,灰水SCRUB-1進入到渣水處理系統(tǒng)。經(jīng)過洗滌的合成氣一部分加壓后與氣化工段的氣體混合后進入到激冷室,另一部分合成氣進入到變換工段進行變換。(5)水煤氣變換單元殼牌氣化生產(chǎn)合成氣中的CO含量遠遠高過德士古等其他氣化工藝,這里采用鈷鉬系寬溫耐硫催化劑中變串低變的CO變換工藝路線。本單元模擬水煤氣變換反應(yīng)(Water Gas Shift),采用的是兩段爐水煤氣變換流程,選用Aspen Plus中的REquil模塊。(6)合成氣單元冷卻從濕洗單元出來的合成氣,經(jīng)過KO-DRM-2模塊,進一步冷卻至104,分離出來的黑水KO-LIQ進入到渣水處理單元進行處理。合成氣則進入到下一步工段。(7)渣水處理單元該單元模擬的是SHELL氣化工藝中的渣水處理系統(tǒng)。從氣化單元產(chǎn)生的爐渣SLAG-1經(jīng)過激冷后分離,爐渣SLAG排除。整個工藝產(chǎn)生的黑水經(jīng)過沉淀,固體沉淀物BD-SOLID排出,而水經(jīng)過降溫加壓后在渣水處理單元中循環(huán)使用。1.3 水煤氣變換反應(yīng)的研究現(xiàn)狀1.3.1 水煤氣變換反應(yīng)的發(fā)展水煤氣變換反應(yīng)是指一氧化碳與水蒸汽生成二氧化碳和氫氣的過程: CO+H2OCO2+H2 H=-41kJ/mol它是一個溫和放熱的反應(yīng),每1(wt)%的CO轉(zhuǎn)換成CO2和H2的絕熱溫升為8-10oC。20世紀初,這個反應(yīng)在工業(yè)上的煤氣化生產(chǎn)氫氣過程中被首次應(yīng)用,它是作為哈伯-波希制氨法的一部分出現(xiàn)的。水煤氣變換反應(yīng)的作用是降低CO濃度,增加H2含量。 由于水煤氣中CO的含量大,不僅造成了H2含量偏低,也會使后續(xù)過程所使用的催化劑中毒,因此一般合成氣之后都會加上水煤氣變換過程(需要外加水蒸汽),以去除CO并增加H2含量。不過,并非所有含有CO的氣體都需要進行水煤氣變換的,因為(1)水煤氣變換去除CO的能力有限,如果CO濃度較低,則該變換反應(yīng)對其影響不大; (2)若在只需要去除CO而不需要制H2的情況下,也沒有必要使用水煤氣變換。例如,甲醇重整氣體主要是CO2和H2,其中也有少量CO,但是采取的去除CO方法并不是水煤氣反應(yīng),而是膜凈化、壓力變換吸附、選擇性甲烷化和CO的選擇性氧化等3。水煤氣變換反應(yīng)的工業(yè)應(yīng)用已有近百年的歷史,廣泛應(yīng)用于以煤、石油和天然氣為原料的制氫工業(yè)與合成氨工業(yè)。此外,它也用于燃料電池、加氫站和在線制氫等小規(guī)模的氫生產(chǎn),其中燃料電池是最新發(fā)展起來的一種應(yīng)用。1.3.2 國內(nèi)外水煤氣變換催化劑的研究發(fā)展CO變換催化劑在合成氨、甲醇、制氫和城市煤氣工業(yè)中得到了廣泛應(yīng)用。在合成氨中,CO變換反應(yīng)的作用主要有兩點:一是將原料氣中的CO變換成CO2,避免氨合成過程中鐵催化劑中毒;二是CO與原料氣中多余的水蒸氣反應(yīng)可生成等體積的H2,從而增加合成氨產(chǎn)量。因此提高變換效率,改進催化劑的性能是研究的主要任務(wù),尤其是對催化劑配方的研究更是如此4。(1) 中(高)溫變換催化劑傳統(tǒng)的Fe-Cr型高溫變換催化劑其活性相-Fe3O4為尖晶石結(jié)構(gòu),鐵鉻系催化劑亦稱為Fe3O4Cr2O3尖晶石固溶體。這種催化劑具有活性溫域?qū)?、熱穩(wěn)定性好、壽命長和機械強度高等優(yōu)點。我國新型高變催化劑的研制開發(fā)較晚,西北化工研究院在國內(nèi)先進行低汽氣比節(jié)能高變催化劑的研究,成功開發(fā)了具有較高活性、選擇性和耐熱穩(wěn)定性的FB-l22型節(jié)能高溫變換催化劑。以添加適量銅為代表的改進型FB-l23低汽氣比高變催化劑與傳統(tǒng)高變催化劑相比,表現(xiàn)出優(yōu)異的性能,達到國外先進水平。(2) 低溫變換催化劑目前用于工業(yè)生產(chǎn)的低變催化劑大概有8種牌號,即B201、B202、B203、B204、B205、B206、B207和CB-5等。由西北化工研究院開發(fā)的LB205型低溫變換催化劑,在相同操作條件下,CO的轉(zhuǎn)化率高于國內(nèi)同類產(chǎn)品,特別是在低溫和低汽氣比條件下,具有較好的活性。我國低變催化劑一般采用共沉淀法生產(chǎn),也有的采用氨絡(luò)合法生產(chǎn),與國外低變催化劑相比,尚有一定差距。(3) 耐硫變換催化劑國內(nèi)耐硫變換催化劑研制發(fā)展很快。主要有齊魯石化公司研究院開發(fā)的QCS系列,上海化工研究院開發(fā)的SB系列,湖北省化學(xué)研究所開發(fā)的EB系列耐硫變換催化劑。西北化工研究院開發(fā)的RSB-A、RSB-B系列耐硫變換催化劑具有相對堆積密度低、活性組分分布均勻、低溫活性好、強度高、價格低、易硫化和壽命長等特點,已在全國多家中、小型化肥廠獲得廣泛應(yīng)用。5寧夏大學(xué)本科畢業(yè)設(shè)計 第二章 WGS反應(yīng)工業(yè)過程模擬第二章 WGS反應(yīng)工業(yè)過程模擬2.1 WGS反應(yīng)原理2.1.1 化學(xué)計量式及熱力學(xué)分析CO+H2O H2+CO2H298K =41.2kJ/mol2.1.2 WGS反應(yīng)催化劑主要有鐵鉻系高溫變換催化劑,銅鋅系低溫變換催化劑和鈷鉬系寬溫變換催化劑三大類5。(1) 鐵鉻系高溫變換催化劑高溫變換催化劑的操作溫度范圍為300500。催化劑組份以氧化鐵為主,Cr2O3為主要助劑,還可以添加K2O、CaO、MgO或Al2O3等助劑。寇麗杰6等發(fā)現(xiàn)助劑CuO和CeO2的加入大大提高了水煤氣變換活性。宋海燕7等對負載型鐵基高溫變換催化劑的制備和性能進行了研究,發(fā)現(xiàn)堿金屬在350時對變換反應(yīng)有較大的促進作用。MgO雖是結(jié)構(gòu)助劑,但由于MgO會與催化劑主要組分生成MgFe2O4,對變換反應(yīng)產(chǎn)生不利影響,所以當MgO含量超過0.08(wt)%時,活性隨著MgO含量的增加反而降低。(2) 銅鋅系變換催化劑低溫變換催化劑的操作溫度范圍為200260。低溫催.化劑有兩大類型:銅鋅鋁和銅鋅鉻系。在低變催化劑中常添加ZnO、Al2O3和Cr2O3三種組分,因三者的熔點都明顯高于Cu的熔點,最適宜作為Cu微晶在細分散態(tài)的間隔穩(wěn)定劑。(3) 鈷鉬系寬溫變換催化劑寬溫變換催化劑的操作溫度范圍為160500。鈷鉬系寬溫變換催化劑有兩類:鈷鉬鉀系和鈷鉬鎂系,前者適用于變換壓力低于3.0MPa,后者適用變換壓力高于3.0MPa。添加堿金屬或堿土金屬(如K、Mg等)可提高催化劑的活性。2.1.3 WGS反應(yīng)機理用于水煤氣變換的催化劑活性金屬主要有Fe、Co、Ni和Ru,其中Ni主要生成甲烷,而Ru價格昂貴,只有Fe和Co是具有商業(yè)價值的元素。鈷系催化劑的水煤氣變換反應(yīng)活性較低,因此對鈷催化劑進行水煤氣變換反應(yīng)研究的文獻不多。(1)甲酸基機理 用負載鐵和鈷變換催化劑進行水煤氣變換反應(yīng)有甲酸基類物質(zhì)生成8。該機理如圖2-1所示,在氣態(tài)或者吸附態(tài)的情況下,OH或水與一氧化碳反應(yīng)生成甲酸基類物質(zhì),OH中間通過水解離得到的,然后甲酸基類中間體被還原成吸附態(tài)的二氧化碳或者二氧化碳氣體。圖2-1水煤氣變換反應(yīng)的甲酸基機理(2)直接氧化機理 Poorter9最先提出了直接氧化機理。此機理如圖2-2所示:吸附態(tài)的一氧化碳或一氧化碳氣體直接氧化為二氧化碳,氧中間體是通過水或一氧化碳解離得到的。在用FTS鐵系催化劑時,WGS反應(yīng)更可能遵循直接氧化機理。Rethwisch10等研究了幾種負載和非負載鐵和鋅催化劑上的WGS反應(yīng),結(jié)果發(fā)現(xiàn),非負載磁鐵催化劑上的WGS反應(yīng)遵循直接氧化機理,而負載鐵催化劑則遵循甲酸基機理。這主要是因為負載鐵催化劑中鐵離子在各氧化態(tài)之間的變化受到限制。Krishnamurthy11在共沉淀Fe-Zn催化劑上也得出WGS反應(yīng)遵循直接氧化機理的結(jié)果。圖2-2 水煤氣變換反應(yīng)的直接氧化機理2.2 化工過程模擬2.2.1 Aspen plus軟件概述Aspen Plus是大型通用流程模擬系統(tǒng),源于美國能源部七十年代后期在麻省理工學(xué)院(MIT)組織的會戰(zhàn),開發(fā)新型第三代流程模擬軟件。該項目稱為“過程工程的先進系統(tǒng)”(Advanced System for Process Engineering,簡稱ASPEN),并于1981年底完成。1982年為了將其商品化,成立了AspenTech公司,并稱之為Aspen Plus。該軟件經(jīng)過20多年來不斷地改進、擴充和提高,已先后推出了十多個版本,成為舉世公認的標準大型流程模擬軟件,應(yīng)用案例數(shù)以百萬計。全球各大化工、石化、煉油等過程工業(yè)制造企業(yè)及著名的工程公司都是Aspen Plus的用戶,利用Aspen Plus,公司可以設(shè)計、模擬、瓶頸診斷和管理有效益的生產(chǎn)裝置。模擬計算是理解化工過程的有用工具。通過計算,可以對整個煤氣化過程進行分析,尋找最優(yōu)操作點,提高整個過程的熱效率,達到過程優(yōu)化的目的;可以輔助設(shè)計以及解釋說明實驗數(shù)據(jù);還可以預(yù)測合成氣的組成和污染物的排放。相對于煤燃燒而言,煤氣化的數(shù)學(xué)模擬還是一個比較新的課題,煤顆粒的化學(xué)反應(yīng)、煤灰的沉積等方面還存在許多不確定性,計算時需作多種假設(shè),進行簡化處理。隨著環(huán)境問題和能源問題的日益突出,煤氣化技術(shù)引起了越來越多的關(guān)注,煤氣化過程模擬技術(shù)的研究也得到了國內(nèi)外許多研究人員的重視。2.2.2 WGS反應(yīng)在德士古氣化法中的應(yīng)用(1) CO變換工藝流程如圖2-3所示,經(jīng)過除塵的德士古煤氣分成兩股,一股經(jīng)過換熱后輸送到CO變換爐中進行變換,另一股與變換后冷卻過的變換氣匯合。匯合后經(jīng)過換熱器C-02回收熱量后經(jīng)過氣液分離器F-01 分離出液體,氣相經(jīng)過換熱器C-03回收熱量后經(jīng)過分離器F-02分離出液體。氣相經(jīng)過換熱器C-04、C-05回收熱量后去氣液分離器F-03 進行氣液分離。氣相通過換熱器C-06將從F-04 來的冷凝液加熱,再經(jīng)過換熱器C-07 將脫鹽水加熱,再經(jīng)過水冷器C-08后溫度降至40左右。氣液混合物去分離器F-04 ,氣相出變換工段去脫硫脫碳工段。出F-04的冷凝液經(jīng)過換熱器C-06預(yù)熱后進入汽提塔E-01回收其中溶解的氣體。出分離器F-01、F-02和F-03的冷凝液匯集后去德士古氣化裝置。圖2-3 CO變換工藝流程圖換熱器:C-01、C-02、C-03、C-04、C-05、C-06、C-07、C-08 CO變換爐:D-01汽提塔:E-01 氣液分離器:F-01、F-02、F-03、F-04、F-ANAL(2) 煤氣組成、變換反應(yīng)及工藝要求從德士古氣化裝置來的煤氣經(jīng)過除塵過濾后各組分的含量如表2-1。表2-1 德士古煤氣組成(mol%)COCO2H2CH4N2ArH2SCOS H2ONH320.2437.64814.5890.00430.1460.05420.02310.001357.230.0612在一定的溫度下,煤氣中的CO與水蒸汽借助于催化劑發(fā)生變換反應(yīng)生成H2和CO2,與此同時有部分COS轉(zhuǎn)化為H2S,主要發(fā)生的化學(xué)反應(yīng)如下:CO+H2O=H2+CO2 (1)COS+H2 =H2S+CO (2)COS+H2O=H2S+CO2 (3)為了滿足后續(xù)脫硫脫碳及甲醇合成工藝的要求,出CO變換爐D-01的變換氣干氣中的CO摩爾含量必須控制在10%,出CO變換工段的氣體中CO摩爾含量必須控制在19%20%,NH3摩爾含量低于0.01%。(3)模擬成果12運算結(jié)果表明,當設(shè)定變換爐出口氣干氣中的CO摩爾含量為10%時,變換爐中反應(yīng)(1)的CO轉(zhuǎn)化率為70.932%。當反應(yīng)(2)、(3)的COS轉(zhuǎn)化率分別設(shè)定為50%和47%時,出變換爐的變換氣中COS的摩爾含量為0,CO的摩爾含量為5.88%。當出變換工段氣體(物流5)中的CO控制在19%20%時,分配器SPLIT1的分配情況為:進入變換爐的氣體(物流1-1)的流量占德士古煤氣(物流1)總流量的68.98%。采用RSTOIC反應(yīng)器模型模擬CO變換爐,當CO變換率為70.932%時,出變換爐氣體干氣中的CO摩爾含量可以控制為10%;當進入到變換爐中的煤氣占總煤氣量的68.98%時,出變換工段的氣體中的CO含量可以控制在19%20%。16寧夏大學(xué)本科畢業(yè)設(shè)計 第三章 殼牌粉煤氣化水煤氣變換工段模擬第三章 殼牌粉煤氣化水煤氣變換工段模擬我國的煤化工目前進入了一個快速發(fā)展階段,煤化工關(guān)鍵在于煤炭氣化工藝的選擇。在眾多的煤氣化工藝中,荷蘭Shell公司發(fā)開的SCGP粉煤氣化(簡稱Shell粉煤氣化)工藝,由于具有對煤質(zhì)要求低、合成氣中有效組分含量高(CO+H289%)、原料煤和氧氣消耗低、潔凈煤技術(shù)環(huán)境污染小等特點,倍受我國化工企業(yè)的青睞。與傳統(tǒng)工藝或早期引進的其他工藝相比,盡管Shell粉煤氣化工藝有它獨特的優(yōu)點,但由于制得原料氣中的CO含量(干基)高達69%以上,這不僅加重了耐硫變換系統(tǒng)的CO變換負荷,而且還有可能引起高放熱的甲烷化副反應(yīng)的發(fā)生,造成催化劑床層超溫。因此,變換裝置的設(shè)計、操作與傳統(tǒng)的設(shè)計、操作相比,難度較大。3.1 變換工藝方案選擇變換工藝方案的選擇,既要根據(jù)Shell 煤氣化的工藝特點,也要滿足后續(xù)甲烷化精制工段的工藝要求。Shell 煤氣化送往變換裝置界區(qū)的粗合成氣中, CO 干基體積含量高達63.31 % ,如此高的CO 含量在以往的造氣工藝中是沒有先例的。另外,原料煤中的硫含量高,使得粗合成氣中的H2S 和COS 體積含量達到約1.5 %。如果采用鐵絡(luò)系催化劑,高變串中變的工藝流程13: 為防止催化劑中毒,粗合成氣要進行脫硫; 由于溫升的限制,變換反應(yīng)器可能需要四段甚至五段,流程長必然導(dǎo)致?lián)Q熱器數(shù)量多,換熱頻繁; 甲烷化精制工藝要求工藝氣中CO 含量不能太高,否則會消耗過多的原料H2 并使甲烷化爐超溫,而且高變串中變流程,CO 干基體積含量只能降到3 %左右。上述3 點原因決定了不能采用高變串中變工藝流程。鈷鉬系QCS 系列催化劑具有起活溫度低、活性溫度范圍寬、熱穩(wěn)定性好以及能耐高硫、高壓、高水汽分壓等優(yōu)點,所以,采用鈷鉬系寬溫耐硫催化劑中變串低變的CO變換工藝路線,是順理成章的選擇,并采用的是兩段爐水煤氣變換流程,選用 Aspen Plus中的REquil模塊。3.2 鈷鉬系寬溫耐硫催化劑的特點(1)具有較寬的活性溫區(qū)其活性溫區(qū)一般為160500,經(jīng)工業(yè)應(yīng)用證明,在120就有足夠的變換活性。因此,該催化劑被稱為寬溫變換催化劑但作為寬溫變換催化劑使用是有條件的,需要一定含量的H2S,操作溫度愈高,汽氣比愈大,要求最低的H2S含量也相應(yīng)提高。(2)有良好的耐硫與抗毒性能因鈷鉬系催化劑的活性組分是硫化物(必須將其氧化物變成硫化物后方具有活性),故可耐高硫。這是鐵鉻系和銅鋅系變換催化劑所無法比擬的。對其他有毒物質(zhì)的抗毒性也較好,少量的NH3、HCN、C6H6等對其活性均無影響。(3)具有耐高水汽分壓的性能以鉀為助劑的鈷鉬系催化劑這一性能較差,但以鎂為助劑的鈷鉬系催化劑的這一性能非常突出。這種催化劑的活性溫區(qū)一般在280500,在低壓低溫條件下活性不夠理想,在高壓(3.88.0MPa)下使用時,催化劑活性良好,在一定的汽氣比的條件下可使變化爐出口CO降到1.0%左右。(4)強度高這類催化劑經(jīng)硫化后,其原始強度提高0.51.0倍。(5)壽命長這類催化劑在工業(yè)裝置中一般可使用5年左右,也有應(yīng)用10年以上的例子。3.3 模型物性方法選擇RK-SOAVE狀態(tài)方程適用于除了液體摩爾體積外的所有熱力學(xué)性質(zhì),可應(yīng)用于非極性或中極性混合物,如碳氫化合物和輕氣體如CO2、H2S和H2等。RK-ASPEN狀態(tài)方程是RK-SOAVE狀態(tài)方程的拓展,利用此狀態(tài)方程提供的極性參數(shù)可擬合極性化合物的氣相壓力14,應(yīng)用于更多的極性組分和碳氫化合物的混合,以及中高壓條件下的輕氣體。殼牌煤氣屬于由上述狀態(tài)方程涉及的多種非極性和極性碳氫化合物和輕氣體組分構(gòu)成的混合物。由于本工段中涉及到的氣體壓力高達38.7 atm,溫度高達480,屬于典型的高溫高壓系統(tǒng),完全符合RK-ASPEN狀態(tài)方程,可適用于高溫、高壓系統(tǒng)的范圍,因此本工藝中的所有設(shè)備的模擬均采用RK-ASPEN物性方法。3.4 Aspen Plus軟件模擬過程變換裝置是殼牌粉煤氣化裝置的下游裝置,下游接酸性氣體和二氧化碳氣體脫除裝置(低溫甲醇洗裝置),起著承前啟后的作用;其作用是把粗煤氣中過高的CO變換成CO2,同時產(chǎn)生H2,以調(diào)整粗煤氣中CO和H2的含量,滿足甲醇合成裝置對合成氣中氫碳比的要求。3.4.1 變換工段模擬殼牌氣化生產(chǎn)合成氣中的CO含量遠遠高過德士古等其他氣化工藝,這里采用鈷鉬系寬溫耐硫催化劑中變串低變的CO變換工藝路線。水煤氣變換過程,既為氣化產(chǎn)物的凈化過程,又是原料制氫過程的繼續(xù)。如圖3-1所示,含有60%以上H2的粗合成氣WGS-SG-1與變換蒸汽SHIFT-STM混合后經(jīng)過預(yù)熱器WGS-EX1達到450,然后在WGS-1反應(yīng)器中進行第一次變換反應(yīng),產(chǎn)物WGS-SG-4經(jīng)過冷卻到450后進入第二次變換反應(yīng)爐WGS-2進行變換,經(jīng)過變換后的合成氣SYNG經(jīng)過冷凝,在出變換裝置時,CO干基體積最終含量小于0.6%。 圖3-1 變換工段流程圖混合器:MIXER換熱器:WGS-EX1、WGS-EX2反應(yīng)器:WGS-1、WGS-2為了方便與實際生產(chǎn)數(shù)據(jù)進行比較,本文在模擬的過程中采用了英制單位。在本文中,溫度用(華氏溫度)表示,壓力用psi(磅/平方英寸)表示,流量用lb/hr(磅/小時)表示。流程圖中各模型參數(shù)如表3-1所示。表3-1 水煤氣變換模塊中的模型描述NO模塊名稱模塊參數(shù)描述1WGS-EX1(HEATER) T=450,P=570psi 模擬換熱器2WGS-1(REquil) T=900,P=570psi 模擬變換反應(yīng)器13WGS-EX2(HEATER) T=450,P=534psi 模擬換熱器4WGS-2(REquil) T=540,P=520psi 模擬變換反應(yīng)器2Equilibrium Reactor 平衡反應(yīng)器的選擇 :性質(zhì):根據(jù)化學(xué)反應(yīng)方程式進行反應(yīng),按照化學(xué)平衡關(guān)系式達到化學(xué)平衡,并同時達到相平衡。用途:已知反應(yīng)歷程和平衡反應(yīng)的反應(yīng)方程式,不考慮動力學(xué)可行性,計算同時達到化學(xué)平衡和相平衡的結(jié)果。反應(yīng)器模塊比較:Rstoic、RYield、REquil、RGibbs、RCSTR、RPlug、Rbatch反應(yīng)器模塊的比較如下表3-2所示。表3-2 反應(yīng)器模塊比較模型說明用途適用于Rstoic化學(xué)計量反應(yīng)器具有規(guī)定反應(yīng)程度和反應(yīng)動力學(xué)部知道或不重要,但化學(xué)計轉(zhuǎn)化率的化學(xué)計量反量數(shù)和程度是已知的反應(yīng)器應(yīng)器模型RYield收率反應(yīng)器具有規(guī)定收率的反應(yīng)化學(xué)計量和反應(yīng)動力學(xué)不知道或不重器模型要,但收率分布已知的反應(yīng)器REquil平衡反應(yīng)器通過化學(xué)計量計算實化學(xué)平衡和相平衡同時發(fā)生的反應(yīng)器現(xiàn)化學(xué)平衡和相平衡RGibbsGibbs自由能最小通過Gibbs自由能最小化學(xué)平衡和相平衡同時發(fā)生的反應(yīng)器,的平衡反應(yīng)器實現(xiàn)化學(xué)平衡和相平對固體溶液和氣-液-固系統(tǒng)計算相平衡衡RCSTR連續(xù)攪拌釜式反模擬連續(xù)攪拌釜式反帶反應(yīng)速率控制和平衡反應(yīng)的單相、兩應(yīng)器應(yīng)器相或三相攪拌釜式反應(yīng)器,在任何基于已知的化學(xué)計量和動力學(xué)的相態(tài)RPlug活塞流反應(yīng)器模擬活塞流反應(yīng)器帶反應(yīng)速率控制相或三相活塞流反應(yīng)器,在任何基于已知的化學(xué)計量和動力學(xué)相態(tài)Rbatch間歇反應(yīng)器模擬間歇或半間歇的帶反應(yīng)速率控制的單相、兩相或三相間反應(yīng)器歇和半間歇的反應(yīng)器,在任何基于已知的化學(xué)計量和動力學(xué)的相態(tài)本文設(shè)計所用煤是Illinois 6,對該煤進行的氣化(煤處理量為2.5萬噸/天)結(jié)果如表3-4,水煤氣變換中主要的物流操作條件及流量如表3-3所示:表3-3 水煤氣變換主要物流操作條件及流量物流 WGS-SG-1 SHFT-STM WGS-SG-2 WGS-SG-4 SYNG溫度(F) 392 502 435 900 540壓力(psi) 582 700 582 570 520流量(lb/hr) 2808600 4600000 7408600 7408600 7408600表3-4 Shell粉煤氣化合成氣組成(mol%)組分 CO H2 CO2 CH4 N2 H2O含量 0.54950.3771 0.0073 0.0380 0.0144 0.01373.4.2 模擬結(jié)果與討論變換氣經(jīng)過冷凝器冷卻后,最終出變換裝置時各段出口組分的干基體積如表3-5。由表可知出來的變換氣中有很高含量的H2,后續(xù)可通過變壓吸附技術(shù)分離出部分H2,剩余H2滿足甲醇合成要求的H/C比即可。表3-5 出變換工段的干基氣體組成(mol%)組分 CO H2CO2CH4N2一段出口 4.2858.433.42.57 0.98二段出口 0.6059.935.82.5 0.94 變換工段中各流股的參數(shù)如表3-6所示:表3-6 變換工段中各流股參數(shù)WGS-SG-1WGS-SG-3WGS-SG-4SYNG摩爾流量(lbmol/hr)CH4106727106727106727106727CO1543330154333017962425755CO2205032050313842101538070H21059120105912024228302576690H2O38478463848032747803120910N240444404444044440444總流量(lbmol/hr)2808600740860074086007408600溫度(F)392450900540壓力(psi)582570570520焓( Btu/lbmol)-27737.307-73362.685-72318.142-75900.224密度(lbmol/cuft)0.0620.0610.0390.049(一)水蒸氣用量對變換效果的影響水碳比是指入變換爐水蒸汽與原料氣中一氧化碳氣的體積比,對一定氣體而言,體現(xiàn)了水蒸汽的用量。從熱力學(xué)的角度出發(fā),水煤氣變換反應(yīng)一般需在過量水蒸氣中進行以提高反應(yīng)轉(zhuǎn)化率同時避免催化劑表面積炭15。水碳比對一氧化碳變換率有很大的影響。無論是中溫變換或低溫變換,一氧化碳平衡變換率都是隨水碳比提高而增加,其趨勢都是先快后慢。其變化如表3-7。在實際的工業(yè)生產(chǎn)中水碳比一般為3415,本文模擬結(jié)果水碳比為2.98,與實際工業(yè)水煤氣變換相符合,證明模擬結(jié)果正確。表3-7 水蒸氣對CO變換的影響水蒸氣(104)370 380 390 400 410 420 430440 450 460 470 480 490CO干基(%)0.82 0.78 0.75 0.73 0.71 0.69 0.66 0.63 0.61 0.60 0.58 0.57 0.55理論上,水碳比越高越對CO的變換有利,但加大水蒸氣的用量顯然就增加了能耗,從經(jīng)濟效益角度考慮是不合適的。而且增大蒸汽量同時也增大了氣流總量和熱負荷,還會使爐管的工作條件(熱流密度和流體阻力)惡化。若采用低水碳比,可以節(jié)省工藝蒸汽,減少能耗,但是水碳比的降低,產(chǎn)生的影響因素較多,例如:脫碳所需的熱量的平衡,一段轉(zhuǎn)化的防結(jié)碳與氣體組成的變化,對高、低溫變換和副產(chǎn)高壓蒸汽的影響以及馳放氣排放量的增加等,因此必須全面考慮,得出一個最佳的水碳比。本文模擬的最佳水碳比如圖3-2中G點。圖3-2 CO變換的最佳水碳比(二)不同煤種氣化變換對比在相同的水碳比及操作條件下對神華煤、天堿煤和沾化煤的氣化合成氣(表3-6)做變換對比,變換結(jié)果見表3-8。表3-6神華煤氣化指標和沾化煤氣化指標16 (mol%)神華煤氣化指標天堿煤氣化指標沾化煤氣化指標CO64.2367.8060.82H228.725.2322.28CO21.2019.714.70N24.140.015.23H2O1.716.626.97合計100.0099.37100.00表3-8神華煤氣化變換和沾化煤氣化變換結(jié)果(mol%,干基)神華煤氣化變換天堿煤氣化變換沾化煤氣化變換CO0.58 0.580.58H2 56.9053.9053.70CO239.9044.9042.30N22.560.623.42合計99.94 100.00 100.00水蒸汽用量190980019718601754900(lbmol/hr)由表3-8可知,在相同的操作條件及水碳比下,三種煤的氣化組成變換所需的水蒸汽消耗大小依次為天堿煤神華煤沾化煤。不同的煤種氣化后的H/C比不同,變換要求就不同,煤種的選擇會直接影響變換的效果,同時也影響到經(jīng)濟效益。煤種H/C含量高,氣化產(chǎn)物中H2/CO較高,在變換過程中,要求出口CO含量(干基)小于0.6%時,消耗水蒸汽用量較低。寧夏大學(xué)本科畢業(yè)設(shè)計 第四章 結(jié) 論第四章 結(jié) 論(1) 對殼牌粉煤氣化過程進行了簡單的介紹,氣化流程主要包括以下幾個部分:干燥單元、氣化單元、熱回收單元、濕洗單元、水煤氣變換單元、合成氣冷卻單元、渣水處理單元。本文針對流程中的水煤氣變換單元進行了模擬。(2)本文基于Aspen Plus模擬工程軟件應(yīng)用采用RK-ASPEN物性方法,選取軟件中的REqiul反應(yīng)器模型,選擇中變串低變的兩段變換工藝流程對殼牌粉煤氣化工藝中的CO變換進行模擬,將含有60%以上H2的粗合成氣進行變換最終出變換裝置時CO干基體積最終含量小于0.6%。(3)考察了水碳比對CO變換的影響,通過模擬,得到最佳水碳比為2.98,與實際工業(yè)水煤氣變換相符合,證明模擬結(jié)果正確。(4)在相同的水碳比及操作條件下對神華煤、天堿煤和沾化煤的氣化合成氣進行對比,結(jié)果發(fā)現(xiàn)煤種H/C含量高,氣化產(chǎn)物中H2/CO較高,在變換過程中,要求出口CO含量(干基)小于0.6%時,消耗水蒸汽用量較低。寧夏大學(xué)本科畢業(yè)設(shè)計 參考文獻17寧夏大學(xué)本科畢業(yè)設(shè)計 參考文獻參考文獻1 J.L Feimer, P.L Silveston, R.R Hudgins. Steady-state study of the Fischer-Tropsch reactionJ.Ind. Eng. Chem. Prod. Res. Dev. , 1981, 20: 609-615.2 劉鈞. 煤間接液化工藝流程的模擬與優(yōu)化.西安科技大學(xué)碩士學(xué)位論文D,2007.053 劉春濤,史鵬飛,張新榮.甲醇重整氣中CO去除的研究進展J.電池, 2003,33 (5) :316-318.4 李速延,周曉奇. CO變換催化劑的研究發(fā)展J.西北化工研究所,2007-06-20.5 蔡麗萍,沈菊李,唐浩東等. 費-托合成中的水煤氣變換反應(yīng)J. 化學(xué)通報, 2006, 6.6 寇麗杰,劉全生,高俊 等. 助劑及原料對鐵基高溫變換催化劑性能的影響J. 內(nèi)蒙古工業(yè)大學(xué)學(xué)報, 2003, 22(1): 31-34.7 宋海燕,楊平,華南平 等. 以稀土為助劑的負載型超細鐵基變換催化劑的催化性能J. 工業(yè)催化, 2002, 10(6): 10-14.8 ES Lox, G F Froment. Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible DumbbellsJ. Ind. Eng. Chem. Phys. 1993, 32: 71-82.9 CKR Poorter. Chem. Rev. Silatranes: a review on their synthesis, structure, reactivity and applicationsJ. 1981, 81(5): 447-474.10 DG Rethwisch, JA Dumesic. J. Catal. Adsorptive and catalytic properties of supported metal oxides :III.Water-gas shift over supported iron and zinc oxidesJ. 1986, 101, 35-42.11 SKrishnamurthy, Anwu Li, E Iglesia. Catal. Lett. Structural conversions on iron oxides during formation of Fischer-Tropsch catalystJ. 2002, 80: 77-86.12 陳銀生,應(yīng)于周. 采用Aspen Plus軟件對德士古煤氣合成甲醇工藝中CO變換工段的模擬J.上海:皮革化工,2005, 22(6):34-37 13 賈叢林. Shell煤氣化耐硫變換工藝流程研究J.大氮肥. 1999,22 (5): 338-346.14 ASPEN PLUS Reference Manual-2, Physical Property Methods and Models,1996, 2-18.15 譚世語,薛榮書.化工工藝學(xué)M.重慶:重慶大學(xué)出版社,2009, 1:8-9.16 張宗飛,湯連英, 呂慶元等. 基于Aspen Plus的粉煤氣化模擬J.湖北:化肥設(shè)計.2008,06,14-26.寧夏大學(xué)本科畢業(yè)設(shè)計 致 謝18致 謝光陰似箭,日月如梭,四年的學(xué)習(xí)生涯在不知不覺中就要結(jié)束了。在這四年里,同學(xué)們的共勉,老師們的教誨,是我一生最美好的珍藏。緊張而充實的畢業(yè)論文設(shè)計即將完成,我在興奮之余,深深地感謝在這段時期一直關(guān)心和支持我并給予我莫大幫助的各位老師和同學(xué)!本文的工作是在范輝老師的精心指導(dǎo)下完成的。首先我要感謝范輝老師,在本文的整個研究工作中都得到她的耐心指導(dǎo)。她精辟的分析和評論對本文各個研究階的工作都有極大的幫助。她在學(xué)術(shù)上對我要求嚴格,為我指導(dǎo)方向,誨人不倦,使我在各方面受益頗深。感謝范輝老師、李萍老師以及對本文有幫助的同學(xué),給予的支持和幫助!感謝張來寶、秦麗麗、馬海燕同學(xué)的幫助和支持!最后再次向所有幫助過我的老師、同學(xué)和朋友們表達我由衷的敬意!感謝你們的幫助使我的論文得以順利完成。

注意事項

本文(化學(xué)工程與工藝畢業(yè)論文1.doc)為本站會員(good****022)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!