歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

ahp層次分析法簡(jiǎn)單例子 [層次分析法判斷矩陣]

  • 資源ID:110015916       資源大?。?span id="lxzz9pj" class="font-tahoma">88KB        全文頁數(shù):66頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

ahp層次分析法簡(jiǎn)單例子 [層次分析法判斷矩陣]

最新ahp層次分析法簡(jiǎn)單例子 層次分析法判斷矩陣 層次分析法判斷矩陣程序先確定判斷矩陣;然后用以下程序就好了:%層次分析法的matlab程序 %diertimoxingyiclc,cleardisp(輸入判斷矩陣);% 在屏幕顯示這句話A=input(A=);% 從屏幕接收判斷矩陣n,n=size(A);% 計(jì)算A的維度,這里是方陣,這么寫不太好x=ones(n,100);% x為n行100列全1的矩陣y=ones(n,100);% y同xm=zeros(1,100);% m為1行100列全0的向量m(1)=max(x(:,1);% x第一列中最大的值賦給m的第一個(gè)分量y(:,1)=x(:,1);% x的第一列賦予y的第一列x(:,2)=A*y(:,1);% x的第二列為矩陣A*y(:,1)m(2)=max(x(:,2);% x第二列中最大的值賦給m的第二個(gè)分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后賦給y的第二列p=0.0001;i=2;k=abs(m(2)-m(1);% 初始化p,i,k為m(2)-m(1)的絕對(duì)值 while kp% 當(dāng)kp是執(zhí)行循環(huán)體i=i+1;% i自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i);% m的第i個(gè)分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i個(gè)分量k=abs(m(i)-m(i-1);% k等于m(i)-m(i-1)的絕對(duì)值enda=sum(y(:,i);% y的第i列的和賦予aw=y(:,i)/a;% y的第i列除以at=m(i);% m的第i個(gè)分量賦給tdisp(權(quán)向量:);disp(w);% 顯示權(quán)向量wdisp(最大特征值:);disp(t);% 顯示最大特征值t %以下是一致性檢驗(yàn)CI=(t-n)/(n-1);% t-維度再除以維度-1的值賦給CIRI=0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59;% 計(jì)算的標(biāo)準(zhǔn)CR=CI/RI(n);% 計(jì)算一致性 if CR<0.10disp(此矩陣的一致性可以接受!); disp(CI=);disp(CI);disp(CR=);disp(CR);elsedisp(此矩陣的一致性不可以接受!); end 層次分析法中判斷矩陣的構(gòu)造問題分類號(hào)密級(jí)學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題(題名和副題名)儲(chǔ)敏(作省姓名)指導(dǎo)教師姓名肖偉教授申請(qǐng)學(xué)奇:級(jí)別亟論文提交期±專業(yè)名稱廛旦鏨堂:論文答辯日期學(xué)位授予單能和日期壹室墨三叁望答辯委員會(huì)主席評(píng)闊人年月日注:注明國(guó)際十進(jìn)分類法的分類號(hào)。摘要在定性問題的決策中,是一種優(yōu)秀的方法,其基礎(chǔ)是對(duì)評(píng)價(jià)對(duì)象的兩兩比較,并用比較結(jié)果構(gòu)造判斷矩陣,而這些都依賴于決策者選用的偏好關(guān)系。常采用的偏好關(guān)系有的基于“商”的偏好關(guān)系以及模糊偏好關(guān)系,相應(yīng)構(gòu)造的判斷矩陣分別為正互反判斷矩陣和模糊互補(bǔ)判斷矩陣。本文首先對(duì)的幾種常見標(biāo)度進(jìn)行了比較分析,然后對(duì)正互反判斷矩陣及模糊互補(bǔ)判斷矩陣的權(quán)重計(jì)算方法進(jìn)行了歸納和總結(jié);最后,本文提出了一種新的偏好關(guān)系,即基于“差”的偏好關(guān)系,從而將反對(duì)稱矩陣引入層次分析法,接著對(duì)新型偏好關(guān)系下判斷矩陣的構(gòu)造、一致性的定義與性質(zhì)以及權(quán)重的計(jì)算方法做了初步的研究,最后用算例說明了新方法的應(yīng)用,并做了相應(yīng)的比較分析,結(jié)果表明采用基于“差”的偏好關(guān)系構(gòu)造反對(duì)稱矩陣拓展了的應(yīng)用范圍,有一定的理論和應(yīng)用價(jià)值。關(guān)鍵詞:層次分析法;標(biāo)度:判斷矩陣;一致性;權(quán)重向量,;,;,;,也,:;聲明本學(xué)位論文是我在導(dǎo)師的指導(dǎo)下取得的研究成果,盡我所知,在本學(xué)位論文中,除了加以標(biāo)注和致謝的部分外,不包含其他人已經(jīng)發(fā)表或公布過的研究成果,也不包含我為獲得任何教育機(jī)構(gòu)的學(xué)位或?qū)W歷而使用過的材料。與我一同工作的同事對(duì)本學(xué)位論文做出的貢獻(xiàn)均已在論文中作了明確的說明。研究生簽名:彩參砂。廠年月夕。日學(xué)位論文使用授權(quán)聲明南京理工大學(xué)有權(quán)保存本學(xué)位論文的電子和紙質(zhì)文檔,可以借閱或上網(wǎng)公布本學(xué)位論文的全部或部分內(nèi)容,可以向有關(guān)部門或機(jī)構(gòu)送交并授權(quán)其保存、借閱或上網(wǎng)公布本學(xué)位論文的全部或部分內(nèi)容。對(duì)于保密論文,按保密的有關(guān)規(guī)定和程序處理。研究生簽名:彗叢少,廠年占月夕。日南京理工大學(xué)碩二學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題第一章概論§層次分析法概述美國(guó)運(yùn)籌學(xué)家于年代提出(),它是對(duì)方案的多指標(biāo)系統(tǒng)進(jìn)行分析的一種層次化、結(jié)構(gòu)化決策方法,它采用數(shù)學(xué)方法將哲學(xué)上的分解與綜合思維過程進(jìn)行了描述,從而建立決策過程的數(shù)學(xué)模型,具有適用性、簡(jiǎn)潔性、有效性和系統(tǒng)性等特點(diǎn)。作為規(guī)劃、決策和評(píng)價(jià)工具,自問世以來,已在世界各地得到迅速普及和推廣,取得了大量的研究成果。的第一步工作是建立層次結(jié)構(gòu),本文只就單層中的部分問題進(jìn)行討論。層次分析法構(gòu)造判斷矩陣層次分析法的一個(gè)重要特點(diǎn)就是用兩兩重要性程度之比的形式表示出兩個(gè)方案的相應(yīng)重要性程度等級(jí)。如對(duì)菜一準(zhǔn)則,對(duì)其下的個(gè)方案進(jìn)行兩兩對(duì)比,并按其重要性程度評(píng)定等級(jí)。記。為第和第方案的重要性之比,表列出給出的個(gè)重要性等級(jí)及其賦值。比焉極端重要強(qiáng)烈重要明顯重要稍微重要同樣重要量化值表比例標(biāo)度表按兩兩比較結(jié)果構(gòu)成的矩陣(臼)。,稱作判斷矩陣。易見,且嘶(,),即為正互反矩陣。計(jì)算權(quán)重向量【為了從判斷矩陣中提煉出有用的信息,達(dá)到對(duì)事物的規(guī)律性認(rèn)識(shí),為決策科學(xué)提供科學(xué)依據(jù),就需要計(jì)算判斷矩陣的權(quán)重向量。定義判斷矩陣(),如對(duì),成立,則稱滿足一致性,并稱為一致性矩陣。定理一致性矩陣具有下列簡(jiǎn)單性質(zhì):()(),且存在唯一的非零特征值五。,其規(guī)范化特征向量(,行)叫做權(quán)重向量,口;南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題()的列向量之和經(jīng)規(guī)范化后的向量,就是權(quán)重向量;()的任一列向量經(jīng)規(guī)范化后的向量,就是權(quán)重向量;()對(duì)的全部列向量求每一分量的幾何平均,再規(guī)范化后的向量,就是權(quán)重向量。根據(jù)上述定理中的性質(zhì)()和()即得到判斷矩陣滿足一致性的條件下求取權(quán)值的方法,分別稱為和法和根法。而當(dāng)判斷矩陣不滿足一致性時(shí),用和法和根法計(jì)算權(quán)重向量則很不精確。特征向量法是的種基本方法,定理為特征向量法奠定了理論基礎(chǔ)。定理()成立:記(口,)為正矩陣,()為其譜半徑,則下列論斷()的最大特征值旯戡存在、唯一,且五。();()與兄。對(duì)應(yīng)的規(guī)范化特征向量(,)為正向量,即中每個(gè)元素似。因此,對(duì)于構(gòu)造出的判斷矩陣,就可以求出最大特征值所對(duì)應(yīng)的特征向量,然后規(guī)范化作為權(quán)值。一致性檢驗(yàn)】在實(shí)際應(yīng)用過程中,由于專家在進(jìn)行兩兩比較時(shí)的價(jià)值取向和定級(jí)技巧以及重要性等級(jí)賦值的非等比性,當(dāng)判斷矩陣的階數(shù)時(shí),通常難于構(gòu)造出滿足一致性的矩陣來。但判斷矩陣偏離一致性條件又應(yīng)有一個(gè)度,為此,必須對(duì)判斷矩陣是否可接受進(jìn)行鑒別,這就是一致性檢驗(yàn)的內(nèi)涵。定理設(shè)。是正互反矩陣(口,)的最大特征值,則必有五,其中,等式當(dāng)且僅當(dāng)為一致性矩陣時(shí)成立。應(yīng)用上面的定理,則可以根據(jù)兄。是否成立來檢驗(yàn)矩陣的一致性,如果五。,比大得越多,則的非一致性程度就越嚴(yán)重。因此,定義一致性指標(biāo)一以一,“。磊二一和平均隨機(jī)一致性指標(biāo),見表。南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題矩陣階數(shù)樣本均值()矩陣階數(shù)樣本均值()表平均隨機(jī)一致性指標(biāo)標(biāo)準(zhǔn)值建議取一致性指標(biāo)()對(duì)隨機(jī)一致性指標(biāo)值()之比,作為一致性檢驗(yàn)判別式,并稱作一致性比率(簡(jiǎn)記為),即:旦砒如果,則認(rèn)為該判斷矩陣通過一致性檢驗(yàn)??梢?,方法不僅原理簡(jiǎn)單,而且具有扎實(shí)的理論基礎(chǔ),是定量與定性方法相結(jié)合的優(yōu)秀的決策方法。層次分析法研究的意義“簡(jiǎn)單就是美”。由于給人們決策提供了簡(jiǎn)單的層次框架和方法,同時(shí)它又蘊(yùn)涵著深刻的決策心理機(jī)制和決策效用機(jī)制,因而這一簡(jiǎn)單而又深?yuàn)W的理論進(jìn)行研究具有重要的意義。()理論意義集數(shù)學(xué)方法、層次結(jié)構(gòu)、試驗(yàn)心理學(xué)和比較權(quán)衡分析于一體的,無疑具有十分豐富的內(nèi)涵,可以給我們提供廣闊的研究空間,并使的研究可以集眾學(xué)科之大成,同時(shí)也可以進(jìn)一步促進(jìn)眾多學(xué)科的發(fā)展,尤其是,由于在決策科學(xué)中占有重要的地位,對(duì)它的深入研究有益揭示決策的本質(zhì)。()心理學(xué)意義本身就是建立在試驗(yàn)心理學(xué)之上的,而它的作用卻遠(yuǎn)遠(yuǎn)超出了試驗(yàn)心理學(xué)的范疇,隨著人們對(duì)研究的進(jìn)一步深入,人們?cè)诙聪ぶ行睦頇C(jī)制的基礎(chǔ)上,提出了更貼近人的決策心理的不確定方法等,可以相信,的研究與心理學(xué)的發(fā)展使相互促進(jìn)的。()應(yīng)用意義客觀事物的復(fù)雜性和多樣性給我們的應(yīng)用研究提供了極其廣闊的領(lǐng)域,在豐富了相關(guān)領(lǐng)域研究成果的同時(shí),也對(duì)的適用范圍和條件有更深刻的認(rèn)識(shí)和了解,可以為的進(jìn)一步研究與應(yīng)用提供指導(dǎo)。南京理工大學(xué)碩上學(xué)位論文層次分析法中判斷矩陣的構(gòu)造蠼題可以看出,在具有簡(jiǎn)單表現(xiàn)形式的同時(shí),有著深刻的理論內(nèi)容:簡(jiǎn)單的表現(xiàn)形式使得層次分析法有著廣泛的應(yīng)用領(lǐng)域,深刻的理論內(nèi)容奠定了它在多準(zhǔn)則決策領(lǐng)域中的地位:從而對(duì)層次分析法進(jìn)行研究有著重要的理論價(jià)值和應(yīng)用價(jià)值。§問題的引入及本文工作概要由于寬廣的應(yīng)用領(lǐng)域及巨大的應(yīng)用價(jià)值,理論仍在繼續(xù)發(fā)展著;二十多年對(duì)的研究和應(yīng)用使得它己發(fā)展成一棵枝繁葉茂的大樹,在應(yīng)用時(shí),不同的階段有多種不同的方法。然而,方法的多樣性一方面給決策者提供了選擇的方便和自由,另一方面也增加了決策者做出正確選擇的困難;而且,近年來成果豐富,但缺乏系統(tǒng)的最新總結(jié),已有成果沒有得到很好的推廣,重復(fù)研究也時(shí)有出現(xiàn);何況,盡管模型在理論上有著精巧的構(gòu)思及嚴(yán)格的數(shù)學(xué)證明,但在實(shí)際運(yùn)用過程中經(jīng)常遇到諸如如何使標(biāo)度選擇、判斷矩陣權(quán)重計(jì)算更合理等同題,這些同題無一定的模式可遵循,且直接影響著評(píng)價(jià)結(jié)果的可信度和準(zhǔn)確性。正因?yàn)槿绱?,?duì)進(jìn)行綜述研究,并在總結(jié)的同時(shí)提出新的理論顯得尤為重要。不僅如此,上面介紹的基于“商”偏好關(guān)系,構(gòu)造正互反判斷矩陣,在此之后研究人員提出了模糊偏好關(guān)系,并構(gòu)造模糊互補(bǔ)判斷矩陣,這將在第二章的權(quán)重計(jì)算中介紹;那么除已有的兩種偏好關(guān)系之外有沒有其它的偏好關(guān)系可用于構(gòu)造判斷矩陣?正是基于這樣的思想,本文首次提出了基于“差”的偏好關(guān)系。本文的主要工作有:()概括了的主要研究方向,理清了發(fā)展的脈絡(luò),對(duì)后續(xù)研究有啟發(fā)意義;()對(duì)的幾種常見標(biāo)度進(jìn)行了比較分析,并指出了應(yīng)用的范圍;()就正互反判斷矩陣和模糊互補(bǔ)判斷矩陣的計(jì)算權(quán)重的方法做了總結(jié);()提出一種新的偏好關(guān)系,即基于“差”的偏好關(guān)系,將反對(duì)稱矩陣引入方法,用以構(gòu)造判斷矩陣,并就矩陣的構(gòu)造、一致性的定義和性質(zhì)以及權(quán)重的計(jì)算方法進(jìn)行了初步研究,最后用算例說明了方法的應(yīng)用,并做了比較分析。南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題第二章的標(biāo)度系統(tǒng)及權(quán)重向量的計(jì)算§層次分析法研究迸展簡(jiǎn)述美國(guó)運(yùn)籌學(xué)家于年代提出方法,它是對(duì)方案多個(gè)指標(biāo)系統(tǒng)進(jìn)行分析的一種層次化、結(jié)構(gòu)化決策方法,它采用數(shù)學(xué)方法將哲學(xué)上的分解與綜合思維過程進(jìn)行了描述,從而建立決策過程的數(shù)學(xué)模型。層次分析法的提出,為求解多目標(biāo)、多準(zhǔn)則或無結(jié)構(gòu)特性的復(fù)雜決策問題提供了一種簡(jiǎn)便的方法,它有著適用性、簡(jiǎn)潔性、有效性和系統(tǒng)性等特點(diǎn),因而在提出后的二十多年的時(shí)間內(nèi)得到了廣泛的應(yīng)用和發(fā)展;而與此同時(shí),研究人員和工程人員在研究及應(yīng)用的過程中,又發(fā)現(xiàn)了方法的諸多不盡人意之處,但也正是因?yàn)檫@些缺點(diǎn)和不足促成了許多新的研究熱點(diǎn)。這些問題主要表現(xiàn)在:()標(biāo)度問題構(gòu)造判斷矩陣是應(yīng)用層次分析法的基礎(chǔ)性工作,為了表示兩事物相對(duì)權(quán)重的對(duì)比,用標(biāo)度來量化判斷語言,因而選擇標(biāo)度是構(gòu)造判斷矩陣的前提,是決策正確性的基礎(chǔ):一般情況采用標(biāo)度,這主要來源于心理學(xué)試驗(yàn)以及【的工作。但實(shí)踐證明,標(biāo)度是較粗略的。對(duì)于具體的決策問題,決策者往往難以準(zhǔn)確給出兩個(gè)對(duì)象的重要性程度之比,特別是難以適應(yīng)決策層次中單層含有較多對(duì)象的決策問題,也不符合人們?cè)趦蓛蓪?duì)象比較中常采取的“三七開”、“)開”等方式,這說明提出的評(píng)價(jià)標(biāo)度系統(tǒng)與人們頭腦中的實(shí)際標(biāo)度系統(tǒng)并不一致,從而可能導(dǎo)致排序上的錯(cuò)誤結(jié)論。因而標(biāo)度問題一直是學(xué)者研究的焦點(diǎn)之一,如何改進(jìn)已有的標(biāo)度或提出新的標(biāo)度是國(guó)內(nèi)學(xué)者常走的兩條線路;年左軍川針對(duì)用的標(biāo)度法構(gòu)造判斷矩陣時(shí)的困難,提出了標(biāo)度法;徐澤水日在三標(biāo)度法的基礎(chǔ)上又提出了一三標(biāo)度法和一五標(biāo)度法;為了改善標(biāo)度法的精度,舒康等提出了指數(shù)標(biāo)度法,汪浩等”提出了和分?jǐn)?shù)標(biāo)度法,侯岳衡等在舒康等的指數(shù)標(biāo)度法基礎(chǔ)上提出了“”指數(shù)標(biāo)度法等,這些將在第二節(jié)給出討論和比較。()權(quán)重的計(jì)算問題權(quán)重計(jì)算是的重要步驟之一,在構(gòu)造了判斷矩陣之后,如何通過判斷矩陣求取權(quán)值以達(dá)到評(píng)價(jià)的目的呢?通過求取最大特征值對(duì)應(yīng)的特征向量而得到權(quán)值,但是,實(shí)踐證明,這個(gè)方法雖然簡(jiǎn)單,卻也有其不足,因而求取權(quán)值是方法研究的又一熱點(diǎn)。南京理工大學(xué)碩二學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題()判斷矩陣元素的改進(jìn)在受到廣泛歡迎的同時(shí),也受到了許多批評(píng),其中之一就是:在構(gòu)造判斷矩陣時(shí)指派間整數(shù)及其倒數(shù)的標(biāo)度時(shí)沒有考慮人的判斷的性。有人指出,在方案兩兩比較重要性的賦值時(shí)只考慮了人的判斷的兩種可能的極端情況:以隸屬度選擇某個(gè)標(biāo)度值,同時(shí)又以隸屬度否定其它標(biāo)度值。這一批評(píng)不無道理,因?yàn)檫@對(duì)更客觀地表現(xiàn)人的思維判斷以及事物本身的復(fù)雜性來說,不能說是沒有缺陷的。因此,當(dāng)用精確數(shù)字構(gòu)造的判斷矩陣不能滿足要求、不能準(zhǔn)確反映決策者的偏好關(guān)系的時(shí)候,如何準(zhǔn)確反應(yīng)這種偏好關(guān)系就成了的主要問題。一九八三年荷蘭學(xué)者提出了用三角模糊數(shù)表示比較判斷的方法【”,它假定用三角數(shù)來表示方案兩兩重要性的比較判斷,這給運(yùn)算帶來了不少方便,并從此成為了方法研究的一個(gè)新的分支,許多國(guó)內(nèi)外學(xué)者對(duì)模糊環(huán)境下的判斷矩陣的構(gòu)造、權(quán)重的計(jì)算、一致性檢驗(yàn)等多方面進(jìn)行了研究和討論。圖層次分柝法簡(jiǎn)表傳統(tǒng)的用一個(gè)確定的數(shù)表示判斷,當(dāng)問題比較復(fù)雜、敏感、信息不全、決策方案不足以全面反映決策環(huán)境,或者專家對(duì)方案的了解不夠全面、確切時(shí),人的判斷就具有多種可能,無法指出一個(gè)確定的數(shù)值表達(dá)兩兩比較中的重要程度,一般稱為南京理工火學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題判斷具有不確定性。用模糊數(shù)表示方案兩兩重要性的比較判斷是解決這一問題的有效途徑,不僅如此,有的研究人員將區(qū)間數(shù)、可拓集引入,都是對(duì)層次分析法的有效拓展。在以上列出的幾個(gè)問題之外,還有一致性闖題、保序性問題、群體決策問題以及殘缺判斷矩陣等問題,這些都是以“商”偏好關(guān)系為基礎(chǔ),也就是說,它們的基礎(chǔ)是正互反判斷矩陣;在的發(fā)展過程中,研究人員又提出了模糊偏好關(guān)系,即構(gòu)造模糊互補(bǔ)判斷矩陣;那么,除已有的兩種偏好關(guān)系之外,是否還有其它的偏好關(guān)系?是否可以考慮兩兩之間的重要性程度之差呢?如果可以,是否可以由此構(gòu)造判斷矩陣、求取權(quán)值以達(dá)到?jīng)Q策的目的呢?這將在后文得到解答??傮w來說,理論的發(fā)展源于需要的驅(qū)動(dòng),由于其獨(dú)具的優(yōu)點(diǎn)及廣闊的應(yīng)用領(lǐng)域,層次分析法得到了深入的研究,正不斷趨于完善。§的標(biāo)度系統(tǒng)的基礎(chǔ)工作是構(gòu)造判斷矩陣,而在進(jìn)行兩兩比較時(shí)該如何量化決策者的感覺,即如何更準(zhǔn)確地反映評(píng)價(jià)對(duì)象間的重要性之比?這是構(gòu)造判斷矩陣的關(guān)鍵。在創(chuàng)立之初,用實(shí)驗(yàn)驗(yàn)證分制得到的結(jié)果與光照度定律一致,而又由于年認(rèn)為人們?cè)谔幚硎挛飼r(shí),同時(shí)處理的對(duì)象不能超過個(gè),從而采用了標(biāo)度。但正如上文所說,實(shí)踐證明標(biāo)度是較粗略的。對(duì)于具體的決策問題,決策者往往難以準(zhǔn)確給出兩個(gè)對(duì)象的重要性程度之比,特別是含有較多對(duì)象的時(shí)候,也不符合人們?cè)趦蓛蓪?duì)象比較中常采取的“三七開”、“二八開”等方式,這說明提出的評(píng)價(jià)標(biāo)度系統(tǒng)與人們頭腦中的實(shí)際標(biāo)度系統(tǒng)并不一致,而且在應(yīng)用時(shí)也存在困難,從而可能導(dǎo)致排序上的錯(cuò)誤結(jié)論。因而,標(biāo)度問題一直是學(xué)者研究的焦點(diǎn)之一,到目前為止,人們已提出了近十種標(biāo)度,如標(biāo)度法、一三標(biāo)度法、一五標(biāo)度法、和分?jǐn)?shù)標(biāo)度法、指數(shù)標(biāo)度法等。對(duì)標(biāo)度問題的研究,國(guó)內(nèi)外學(xué)者所做的工作基本上是沿著以下兩條路線:一種方法是通過給出新標(biāo)度,力圖使決策者能更容易地填寫比較矩陣,然后用某種變換將比較矩陣變換成的標(biāo)度法下的判斷矩陣,如三標(biāo)度法和五標(biāo)度法;另一種方法是利用給出的新標(biāo)度直接構(gòu)造判斷矩陣,以期改善判斷矩陣的一致性,如各種指數(shù)標(biāo)度法和分?jǐn)?shù)標(biāo)度法。然而,對(duì)于同一個(gè)決策問題,運(yùn)用不同的標(biāo)度法構(gòu)造判斷矩陣,有時(shí)會(huì)產(chǎn)生不同的方案排序,從而影響了決策的可信度。那么,應(yīng)用時(shí),面對(duì)如此眾多的標(biāo)度法,該如何選擇呢?許多研究人員對(duì)此進(jìn)行了深入的探討,他們一方面不斷提出新的標(biāo)南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題度,一方面對(duì)各種標(biāo)度進(jìn)行綜合比較,以期為應(yīng)用提供方便。已有的比較較早的比較有駱正清【在年對(duì)左軍的三標(biāo)度法和的標(biāo)度法的比較,結(jié)論是:在單一準(zhǔn)則下,三標(biāo)度法和的標(biāo)度法樣,能夠保序,但其精度不如后者;汪浩對(duì)標(biāo)度及和分?jǐn)?shù)標(biāo)度法的比較,其結(jié)論是:當(dāng)語言一致時(shí),標(biāo)度的致性最好,標(biāo)度次之,標(biāo)度的性能最差:此外,駱正清、徐澤水等分別對(duì)常見的四種標(biāo)度標(biāo)度、標(biāo)度、標(biāo)度和指數(shù)標(biāo)度進(jìn)行了比較。他們所采用比較的方法略有不同,駱正清提出了用傈序性、一致性、標(biāo)度均勻性、標(biāo)度可記憶性、標(biāo)度可感知性、標(biāo)度權(quán)重?cái)M合性等標(biāo)準(zhǔn),綜合比較層次分析法中的不同標(biāo)度,并得出結(jié)論:對(duì)單一準(zhǔn)則下的排序,各種標(biāo)度法都具有保序性,建議使用標(biāo)度,對(duì)精度要求較高的多準(zhǔn)則下的排序問題,建議使用指數(shù)標(biāo)度;而徐澤水則從一致性指標(biāo)、最大偏差值、均方差等方面進(jìn)行比較,他認(rèn)為:標(biāo)度的性能最好,最適宜于精確的權(quán)值計(jì)算且能得到較為合理的結(jié)果;另外,”從權(quán)重分布的角度對(duì)幾種常見標(biāo)度進(jìn)行了比較分析。通過對(duì)不同學(xué)者所作的比較研究可以發(fā)現(xiàn),一般認(rèn)為標(biāo)度的內(nèi)在邏輯關(guān)系存在明顯的不合理性,因而試圖用各種方法加以改進(jìn);但是,不同的學(xué)者對(duì)標(biāo)度評(píng)價(jià)所得出的結(jié)論有很大區(qū)別,甚至是對(duì)立的。如汪浩在中認(rèn)為標(biāo)度的一致性最好,而徐澤水認(rèn)為】標(biāo)度的性能最好。為什么不同的學(xué)者對(duì)同一問題得出了不同的結(jié)論?駱正清等在中認(rèn)為,除了評(píng)價(jià)標(biāo)準(zhǔn)不同之外,更主要的是不同學(xué)者在比較時(shí)所采用方法還有待商榷,如在、中都以看作一個(gè)評(píng)價(jià)指標(biāo),顯然不甚恰當(dāng),因?yàn)橛貌煌瑯?biāo)度構(gòu)造的判斷矩陣有不同的隨機(jī)一致性指標(biāo),對(duì)此,本文代之以指標(biāo)。本節(jié)將對(duì)一些常見標(biāo)度進(jìn)行比較。幾種常見標(biāo)度的比較以前人的工作為基礎(chǔ),本節(jié)將對(duì)標(biāo)度()、標(biāo)度()、標(biāo)度()以及一、)進(jìn)行比較,它們的通式分別為、了、云專、殺毒、忙?!?,。根據(jù)的觀點(diǎn),考察標(biāo)度的優(yōu)劣,必須著眼于標(biāo)度本身,研究其特性,用典型的判斷矩陣(由某一標(biāo)度的所有標(biāo)度值構(gòu)成),而不是用一個(gè)特定的判斷矩陣(只有幾個(gè)標(biāo)度值構(gòu)成)去比較分析。因而,本文沿著、的思路,從標(biāo)度的保序性、判斷一致性、最大偏差值、均方差、標(biāo)度均勻性等方面進(jìn)行綜合分析。南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題首先給出這幾種標(biāo)度的描述,見表。區(qū)別同樣重要微小重要稍微重要更為重要明顯重要十分重要強(qiáng)烈重要極端重要表幾種標(biāo)度的描述如同一樣,設(shè)有一組被比較對(duì)象為彳。、彳。、彳,、。、彳,、。、彳,、爿。、么,不失一般性,假定在某準(zhǔn)則下,下標(biāo)大的對(duì)象比下標(biāo)小的對(duì)象都重要。為了問題研究,進(jìn)一步假定:與其本身(彳,)及爿:、。、。、,、彳。、么,、彳。、彳,之間的關(guān)系恰好構(gòu)成法中的九個(gè)等級(jí),即:同樣重要、微小重要、稍為重要、更為重要、明顯重要、十分重要、強(qiáng)列重要、更強(qiáng)列重要、極端重要,相應(yīng)地,:與其本身(:)及彳,、。、爿,、。、么,、。、,之間的關(guān)系恰好構(gòu)成法中的同樣重要、微小重要、稍為重要、更為重要、明顯重要、十分重要、強(qiáng)列重要、更強(qiáng)列重要,如此依次類推。根據(jù)以上關(guān)系,可得到這九個(gè)被比較對(duì)象在四種標(biāo)度下的判斷矩陣,以標(biāo)度為例,如所示,其它標(biāo)度下的矩陣可同樣構(gòu)造?!彼?,們協(xié)¨眈。:卅拋。,忱,:,更強(qiáng)烈重要南京理工大學(xué)碩士學(xué)位論文層次分析去中判斷矩陣的鰒鲞塑嬰可以看出,是一個(gè)非常典型的判斷矩陣,其特點(diǎn)是:對(duì)角線下的第一列就是標(biāo)度的九個(gè)標(biāo)度值,對(duì)角線下的第二列比第一列少一個(gè)數(shù),依此類推。并且上三角的元素全小于,下三角的元素全大于:為更好地進(jìn)行比較,下面給出了四種標(biāo)度下此類矩陣(即上三角的元素全不大于,下三角的元素全不小于的階矩陣)的隨機(jī)一致性指標(biāo),見表。標(biāo)度隨機(jī)一致性指標(biāo)表四種標(biāo)度下九階矩陣的隨機(jī)一致性指標(biāo)保序性所謂保序性,是指根據(jù)某一標(biāo)度(建立判斷矩陣,求其最大特征對(duì)應(yīng)的特征向量,并以該特征向量的各分量作為被比較對(duì)象的權(quán)重)得到的被比較對(duì)象的排序結(jié)果,能真實(shí)地反映被比較對(duì)象之間的原來的次序關(guān)系。根據(jù)以上定義,下面研究以上四種標(biāo)度的保序性。而為了研究保序性,就有必要計(jì)算一”,這九個(gè)比較對(duì)象在不同標(biāo)度下得到的判斷矩陣的最大特征值所對(duì)應(yīng)的特征向量,結(jié)果如表。屹表不同標(biāo)度下得到的權(quán)重由表可知,被比較的個(gè)對(duì)象在不同的標(biāo)度下所得到的權(quán)重是不同的,但四種標(biāo)度下的排序卻是一致的,按照上面的定義,即各種標(biāo)度都具有保序性。而同時(shí)根據(jù),從面得到如下結(jié)論:結(jié)論對(duì)單一準(zhǔn)則下的排序問題,所有標(biāo)度法都具有保序性。但是,正如中所說,進(jìn)一步考察多準(zhǔn)則下的排序問題可以發(fā)現(xiàn),不同標(biāo)度得到的綜合權(quán)重不僅不同,而且排序結(jié)果往往也是不同的。因此,從某種意義上來說,對(duì)于多準(zhǔn)則下的排序問題,各種標(biāo)度都不一定能夠保序。由于多準(zhǔn)則下的排序結(jié)果不僅與標(biāo)度有關(guān),而且與各準(zhǔn)則的權(quán)重也有關(guān),因此,多準(zhǔn)則排序問題更加復(fù)雜,所以,南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題本文只就單準(zhǔn)則的排序問題進(jìn)行了討論。一致性在實(shí)際應(yīng)用過程中,當(dāng)判斷矩陣的階數(shù)時(shí),要構(gòu)造滿足一致性的矩陣通常是比較困難的。但判斷矩陣偏離一致性條件又應(yīng)有一個(gè)度,如果超出這個(gè)度,那么這些判斷就不能真實(shí)反應(yīng)比較對(duì)象間的關(guān)系,這個(gè)判斷矩陣就不能接受。因而,層次分析法中引入一致性概念,主要就是用于評(píng)判決策者構(gòu)造出來的判斷矩陣是否可以接受。正是由于定性問題的復(fù)雜性,人們對(duì)一組事物進(jìn)行兩兩比較時(shí),所做出的定性判斷往往并不能總是保持完全一致,于是,層次分析法引入了一致性指標(biāo)作為衡量判斷矩陣一致性的標(biāo)準(zhǔn),其中:旦:丑幽!二!,一為隨機(jī)一致性指標(biāo),是給定的統(tǒng)計(jì)意義上的常數(shù);并規(guī)定時(shí)不一致性判斷矩陣是可以接受的。顯然,越小,判斷矩陣的一致性越好:當(dāng)?shù)扔诹銜r(shí),判斷矩陣是完全一致的。那么,影響判斷矩陣一致性的因素有哪些呢?毫無疑問,判斷矩陣的一致性與決策者個(gè)人判斷是否能保持邏輯上的一致性密切相關(guān)。然而,進(jìn)一步分析不難發(fā)現(xiàn):對(duì)同一個(gè)排序問題,即使做出的定性判斷完全相同,但如果運(yùn)用不同的標(biāo)度求解,得到的判斷矩陣是不一樣的,一般情況下判斷矩陣的一致性也是不同的??梢姡袛嗑仃嚨囊恢滦耘c標(biāo)度本身也有關(guān)。基于以上分析,本文將用不同標(biāo)度下的判斷矩陣的一致性作為衡量標(biāo)度優(yōu)劣的一個(gè)重要指標(biāo)。駱正清阱認(rèn)為,由于不同標(biāo)度下的判斷矩陣的階數(shù)都相同(),故而只需要比較,就可以知道哪一個(gè)標(biāo)度下判斷矩陣的一致性更好一些。但實(shí)際情況是,不同標(biāo)度的隨機(jī)一致性指標(biāo)是不相同的;因而不同于以前的比較,這里用的是,而不是,顯然這樣更合理。死。最大偏差均方差表四種標(biāo)度的比較:一致性,最大偏差,均方差對(duì)不同標(biāo)度下構(gòu)造出來的判斷矩陣的一致性進(jìn)行比較(見表)。從表前四南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題列可以看出,四種標(biāo)度的值依次遞減,標(biāo)度的值最大,標(biāo)度的值最小,為零。從而可以得到以下結(jié)論:結(jié)論標(biāo)度法的一致性最好,分?jǐn)?shù)標(biāo)度法的一致性次之,標(biāo)度法的一致性最差。最大偏差值及均方差是一個(gè)較好的反映判斷矩陣一致性的指標(biāo),對(duì)于構(gòu)造出來的每一個(gè)判斷矩陣(),可以用特征值方法求出權(quán)重向量(,力),而由定理知道,當(dāng)為一致性矩陣時(shí),國(guó),因而用吼與訓(xùn)峨的偏差來度量判斷矩陣的一致性是自然的,也是有效的。首先給出最大偏差值及均方差的定義,記最大偏差為,均方差為仃,:一掣甌鬲。顯然,它們的取值越小越好。對(duì)不同標(biāo)度下構(gòu)造出來的判斷矩陣進(jìn)行比較,結(jié)果如表最后兩列所示,可以看出最大偏差及均方差均依次遞減,從而有結(jié)論從最大偏差及均方差來看,標(biāo)度的一致性最差,其次是標(biāo)度,再次是標(biāo)度,標(biāo)度的一致性最好。標(biāo)度均勻性所謂標(biāo)度均勻性,是指在某一標(biāo)度下,所有相鄰的兩標(biāo)度值的差或商的值大致相等的程度。顯然,對(duì)一個(gè)特定的標(biāo)度,如果其中某兩個(gè)相鄰的標(biāo)度值的差或商,比該標(biāo)度下其它兩個(gè)相鄰的標(biāo)度值的差或商大得太多,那么這種標(biāo)度就不是很合理。因此,標(biāo)度均勻性可以作為衡量某一標(biāo)度是否合理的重要標(biāo)準(zhǔn)。為了研究標(biāo)度均勻性,現(xiàn)給出以下幾個(gè)定義:定義某一標(biāo)度下相鄰的標(biāo)度值差。為:。,一,。一,塑重型王奎蘭墅土蘭堡蘭苧星盜坌塹鯊!型塑塹墮!墮!墾墮。,。,其中,為某一標(biāo)度下相鄰的兩個(gè)標(biāo)度值。定義某一標(biāo)度下相鄰的標(biāo)度值商。,為:其中,為某一標(biāo)度下相鄰的兩個(gè)標(biāo)度值。定義某一標(biāo)度下標(biāo)度值差的距離(記為),為該標(biāo)度下最大標(biāo)度值差與該標(biāo)度下最小標(biāo)度值差的商,口),定義某一標(biāo)度下標(biāo)度值商的距離(記為),為該標(biāo)度下最大標(biāo)度值商與該標(biāo)度下最小標(biāo)度值商的商,“),定義某一標(biāo)度的標(biāo)度值距離的平衡值為或的最大值,即,(,)。駱正清在中認(rèn)為,在到之間,標(biāo)度均勻性比較理想;在到之間,標(biāo)度均勻性比較好;取其它值,標(biāo)度均勻性比較差。根據(jù)以上指標(biāo),可以計(jì)算幾種指標(biāo)的均勻性,結(jié)果如表所示。表不同標(biāo)度下標(biāo)度值的幾種距離從上表可以得到以下結(jié)論:結(jié)論從標(biāo)度的均勻性來看,標(biāo)度的均勻性最好,標(biāo)度的均勻性次之,兩種分?jǐn)?shù)標(biāo)度的均勻性較差。以上從標(biāo)度的保序性、判斷矩陣的一致性、最大偏差值、均方差、標(biāo)度均勻性等方面對(duì)四種標(biāo)度進(jìn)行了比較,結(jié)果表明,在單準(zhǔn)則的情況下,四種標(biāo)度都是保序的;從一致性指標(biāo)、最大偏差值、均方差來分析,;標(biāo)度法的一致性最好,分?jǐn)?shù)標(biāo)度法的一致性次之,標(biāo)度法的一致性最差;但從標(biāo)度的均勻性來看,標(biāo)度南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題的最好,標(biāo)度次之,兩種分?jǐn)?shù)標(biāo)度的均勻性較差?;谝陨戏治觯梢钥闯?,無論從指標(biāo),還是從最大偏差及均方差來看,標(biāo)度都具有最好的一致性,而標(biāo)度本身的均勻性僅次于標(biāo)度;因而,個(gè)人認(rèn)為,對(duì)于一般精度要求不高的決策問題,可以使用標(biāo)度以及分?jǐn)?shù)標(biāo)度法,而對(duì)于計(jì)算精度要求較高的決策問題,使用標(biāo)度較為理想。§權(quán)重向量的計(jì)算在決策過程中,決策者給出方案兩兩比較的偏好信息。在以前的研究中,給出的偏好信息有兩類,即基于“商”的偏好信息和模糊偏好信息,它們可由判斷矩陣來表示,從而相應(yīng)的判斷矩陣有兩類,即正互反判斷矩陣和模糊互補(bǔ)判斷矩陣。在應(yīng)用層次分析法時(shí),如何從判斷矩陣計(jì)算權(quán)重向量是一項(xiàng)非常重要的步驟,而多年的發(fā)展使得計(jì)算的方法十分豐富,本文對(duì)兩類矩陣的一些重要的權(quán)重計(jì)算方法以及兩類矩陣的關(guān)系進(jìn)行了初步的歸納和總結(jié)。正互反判斷矩陣權(quán)重向量的計(jì)算在第一章對(duì)層次分析法的介紹過程中就已經(jīng)給出了一致性矩陣的權(quán)重向量的計(jì)算方法,權(quán)重向量即為唯一特征值對(duì)應(yīng)的規(guī)范化的特征向量,也是任向量經(jīng)規(guī)范化后的向量;而一般的判斷矩陣并不滿足一致性,若用列向量經(jīng)規(guī)范化后的向量作為權(quán)重向量,則過于粗糙,但根據(jù)定理,正矩陣()的最大特征值是唯一存在的,并且對(duì)應(yīng)的規(guī)范化特征向量為正向量,從而將其譜半徑()對(duì)應(yīng)的規(guī)范化特征向量定義為權(quán)重向量。于是,對(duì)于一個(gè)不具有一致性的判斷矩陣,只要求取其最大特征值,然后計(jì)算對(duì)應(yīng)的特征向量,規(guī)范化后即得權(quán)重向量。然而,這里是有疑問的,這樣得到的權(quán)重向量是否代表了真正的權(quán)重向量呢?在此之后,的研究人員基于特征值及對(duì)一致性條件的偏差分析又提出了許多方法?;谔卣飨蛄康姆椒ㄌ卣飨蛄糠ㄔ谏厦嬉呀?jīng)得到介紹,而許多研究人員將此方法進(jìn)行推廣得到了一些新的方法,主要有廣義特征根法、改進(jìn)梯度特征向量法以及廣義梯度特征向量法。廣義特征根法有研究人員認(rèn)為,判斷矩陣的確定可能依賴于被比較方案的先后順序,也就是說,決策者對(duì)方案相對(duì)于方案的相對(duì)重要性容易做出判斷,而對(duì)于方案相對(duì)于方案的相對(duì)重要性則可能難以判斷,即使給出判斷也不一定具有互反性。因此為了在排序權(quán)重的計(jì)算中反映出這種決策者的心理因素,人們?cè)O(shè)計(jì)了如下的廣義特征根法。設(shè)對(duì)于判斷矩陣(口玎),決策者給出其上三角部分較有把握,于是可在的基礎(chǔ)上構(gòu)成個(gè)輔助矩陣,),其元素滿足“口盼迎比州其中(,)是待定的權(quán)重向量。顯然,當(dāng)為一致性矩陣時(shí),有:爿,當(dāng)不具有一致性時(shí),不僅不是一致的,也不是互反的。用爿代替,求解的右特征向量,注意到爿五,。即為口;似:。:展開后有毗五圓吼,批;慨:旯。,編批五。,”,由此可解得見一。化,擊(婁。嘞”,”一將上式求得的(,)歸一化后,即得到排序權(quán)重向量。改進(jìn)梯度特征向量法廣義特征根法對(duì)方案比較順序比較敏感這一特點(diǎn),實(shí)際上還可進(jìn)一步加以利用。因?yàn)槿藗冊(cè)谶M(jìn)行兩兩比較時(shí),總是對(duì)某些比較判斷較有把握,而對(duì)另一些比較判斷可能把握不大,甚至沒有把握。此時(shí),(自然希望在導(dǎo)出排序權(quán)重向量過程中,能加強(qiáng)那些有把握的判斷的影響作用,而削弱那些沒把握的判斷的影響作用特別當(dāng)判斷矩陣不一致程度很高時(shí),人們比較判斷的偏好性就更明顯。為此,人們?cè)趶V義特征根法基礎(chǔ)上引進(jìn)一個(gè)置信度矩陣(五),此中五用來描述判斷吼的置信度,并通過對(duì)原比較判斷矩陣與置信度矩陣的某種組合運(yùn)算使不同置信度的判斷甜。在排序向量的導(dǎo)出中起不同的作用。此即改進(jìn)梯度特征向量法的基本思想。對(duì)比較判斷矩陣。(驢)。的上三角(或下三角)部分構(gòu)造相應(yīng)的置信度矩陣(見矽。,此中的上三角部分元素五表示決策者在做出判斷時(shí)的置信度,五,萎,五。,五越大,表示日越可信,五,絕對(duì)可信,五表示以。不可信;而的下三角部分全取,即有無:元。:?!霸省T诘幕A(chǔ)上構(gòu)造輔助矩陣),使。()。,其中。是矩陣的乘積,為元素全為的階方陣,(墮),(,);是待定的權(quán)重向量的各分量。則有,”警,川扣,川口,”,門盟,的上三角元素由兩部分組成,其中“甌是可信成分,(旯口)絲可看成不可。,。信部分。當(dāng)我們采用輔助矩陣彳來導(dǎo)出權(quán)重向量時(shí),顯然五越大,甌在導(dǎo)出過程中的作用就越明顯,從而起到了具有不同置信度的在導(dǎo)出時(shí)所超的不同的南京埋工大學(xué)碩上學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題影響作用。作為的代替,以下來求的右主特征向量,即解特征方程力。;展開得到五。挖,。()如,”,”一,即可解得允一,一。一。,厶,糾一,廣義梯度特征向量法上述算法均以判斷矩陣(口,)。為基礎(chǔ)。眾所周知吼表示了元素與元素的直接比較信息,口。州則表示了元素與元素的直接比較信息和元素通過元素與元素的間接比較信息,(毋)比具有更多的信息,類似的么(口滬,日乏,:妒給出了元素與元素的直接比較和間接比較的綜合信息。設(shè)判斷矩陣(擴(kuò)),構(gòu)造矩陣判斷矩陣(擴(kuò))。,其中七,陀,、“一,口:)如上定義,(,訂)是待定的權(quán)重向量。求的右主特征向量,即解特征方程肌五。,:,錈五,:解上述特征方程得擊靜,¨,孔令,將(,月)歸一化,即得所求的權(quán)重向量?;谄钭钚』姆椒▽?duì)于判斷矩陣(口),當(dāng)其滿足一致性時(shí),對(duì),有吼,成立,而當(dāng)不滿足一致性時(shí),。與州彬是不全相等的,因而研究人員認(rèn)為礪與矧的距離的大小可以作為衡量判斷矩陣一致性程度的指標(biāo),因此人們從偏差最小化的角度取求取權(quán)值,即建立優(yōu)化模型:(彤,爿)其中,為判斷矩陣,)為待求的權(quán)重向量集,:(絲)為權(quán)重矩陣,妒為模型選用的偏差函數(shù),從而構(gòu)造不同的偏差函數(shù)就形成了不同的方法。最小二乘法(,爿)(口,)。文獻(xiàn)構(gòu)造了一個(gè)典型的二次型問題顯見通過構(gòu)造函數(shù)即可求解。改進(jìn)最小二乘法”】緲毫老(曠,)。顯然涵黼的每枷自最小乘蝴相應(yīng)項(xiàng)乘以加權(quán)因子,來得到,函數(shù)痧(,一)表示權(quán)重向量與判斷矩陣總的偏離程度,并把廬(,彳)在中的最小點(diǎn)作為判斷矩陣所確定的權(quán)重向量,稱為改進(jìn)最小二乘法。在中,作者證明廬(緲,)在中有唯一的最小點(diǎn),從而可求取權(quán)重向量。對(duì)數(shù)最小二乘法妒砉(鼬,翟)在為嘎陛矩陣時(shí)蚩魁從而有“(,)成立,因而廬(,爿)。當(dāng)不滿足一致性時(shí),將(緲,彳)取最小值時(shí)的作為權(quán)重向量,利用函數(shù)法很容易解得型、,。()窆(南口酊)。最小偏差法咿,艫薈(瓦)溯顯然,并且當(dāng)且僅當(dāng)滿足一致性時(shí)(,一)取得最小值,從而(礦,爿)可以衡量判斷矩陣滿足致性的程度。陳寶謙在中證明(,)在中存在唯一最小解,并且也是方程組喜(吼老確啦,在上的唯一解。金菊良等的方法【月礦(礦,)。一”。顯然,妒(,爿)值越小,則判斷矩陣的一致性程度越高;(矽,)時(shí),為一致性矩陣。金菊良等用加速遺傳算法解此優(yōu)化問題南京理工大學(xué)頌:學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題得到了較好的結(jié)果。以上方法有一個(gè)相同的特點(diǎn),即都是在構(gòu)造偏差函數(shù)的基礎(chǔ)上來求取權(quán)值,從而盡管方法不同,構(gòu)造的偏差函數(shù)各異,但都有著相同的原理。在此之外還有雷功炎利用相對(duì)熵計(jì)算權(quán)重的方法”】;特別的,和在中總結(jié)了種偏差函數(shù),原理相同,不多贅述。總的說來,在目前常用的計(jì)算正互反判斷矩陣權(quán)重的方法中,列正規(guī)化法等只考慮判斷矩陣一列的影響,所以計(jì)算精度不高;特征值法是目前最常用的方法,它計(jì)算判斷矩陣的最大特征根所對(duì)應(yīng)的特征向量并歸一化后作為權(quán)重,該法的不足是,在權(quán)重計(jì)算時(shí)沒有考慮判斷矩陣的一致性條件以及決策者在構(gòu)造判斷矩陣時(shí)的心理因素,從而有了幾種改進(jìn)的方法;基于偏差最小化的方法都是利用判斷矩陣所有元素的信息,并根據(jù)盡可能滿足一致性條件而構(gòu)造相應(yīng)的優(yōu)化問題來求取權(quán)重,在理論上是相互等價(jià)的。模糊互補(bǔ)判斷矩陣權(quán)重向量的計(jì)算近年來,有關(guān)模糊互補(bǔ)判斷矩陣的研究受到人們的關(guān)注,其理論與方法的研究取得了一些成果。下面首先對(duì)模糊互補(bǔ)判斷矩陣及其相關(guān)概念做簡(jiǎn)要的介紹,然后對(duì)已有的排序方法進(jìn)行歸納和總結(jié)??紤]有個(gè)對(duì)象。,的評(píng)價(jià)問題,在評(píng)價(jià)過程中,所采用的決策信息是決策者針對(duì)評(píng)價(jià)對(duì)象提供的一類模糊互補(bǔ)判斷矩陣。定義【設(shè)二元對(duì)比矩陣(,若對(duì),滿足性質(zhì),。,。,則稱為模糊互補(bǔ)判斷矩陣。其中,理,優(yōu)于,的程度,具體規(guī)定:(¨,。表示,與,同樣重要:()。表示,比,重要,且。越小,比,越重要;()。表示么;比,重要,且。越大,比彳越重要。對(duì)于決策者做出的判斷,有必要考慮其判斷的一致性,目前,使用模糊互補(bǔ)判斷矩陣時(shí)的一致性定義主要有兩種,分別稱為加性一致性和乘性一致性,定義如下:定義【若模糊互補(bǔ)判斷矩陣(,)滿足(。一言)(目一專),即壹,。,()則稱滿足加性一致性。南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題定義若模糊互補(bǔ)判斷矩陣尸(擴(kuò))。滿足瓦,魯;岷見驢見以盼啪,一()則稱滿足乘性一致性。構(gòu)造判斷矩陣的目的在于更好地獲取權(quán)值,那么,對(duì)于模糊互補(bǔ)判斷矩陣該如何定義權(quán)值呢?在定理中,已經(jīng)知道對(duì)于滿足一致性的正互反判斷矩陣,列向量之和經(jīng)規(guī)范化后的向量就是權(quán)重向量,與此相似,陳守煜給出了一下定義:定義模糊互補(bǔ)判斷矩陣(,)列向量之和經(jīng)規(guī)范化后的向量即為。權(quán)重向量,即廣二】一一,顯然,這種方法簡(jiǎn)單易行,但沒有考慮判斷矩陣該滿足的一致性條件,而一般情況下構(gòu)造的判斷矩陣是不滿足一致性條件的,自然這樣得到的排序結(jié)果也是相當(dāng)粗糙的,那么該如何求取權(quán)值昵?目前,所用的方法大致可分為四類:()通過變換將構(gòu)造的模糊互補(bǔ)判斷矩陣變換為滿足一致性的模糊互補(bǔ)判斷矩陣,用定義的方法求取權(quán)值;()基于加性一致性的權(quán)重計(jì)算方法;()基于乘性一致性的權(quán)重計(jì)算方法;()基于正互反判斷矩陣的權(quán)重計(jì)算方法。為了方便,設(shè)(,)為構(gòu)造的判斷矩陣,(,)為待求的權(quán)重向量,其中,下面將逐介紹各類方法?;诙x的方法既然認(rèn)為對(duì)于滿足一致性的判斷矩陣,可以用列向量之和經(jīng)規(guī)范化后的向量作為權(quán)重向量,那么很容易就會(huì)想到,是否可以經(jīng)過一定的變換將構(gòu)造的判斷矩陣“變”為一致性的矩陣昵,因?yàn)槟菢泳涂梢灾苯佑枚x來計(jì)算權(quán)重了。如此看來,這種方法的關(guān)鍵就在于如何施行變換了。,對(duì)判斷矩陣按行求和,記,。,做變換礦華,“,則玎)是加性一致性矩陣。南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷理陣的構(gòu)墮璺嬖對(duì)于參數(shù)的取值,徐澤水在中認(rèn)為(一)比較合理。,對(duì)判斷矩陣按行求和,記,。,做變換,則足擴(kuò))。是乘性一致性矩陣。以上兩種方法均采用數(shù)學(xué)變換人為地將模糊互補(bǔ)判斷矩陣轉(zhuǎn)變?yōu)橐恢滦阅:パa(bǔ)判斷矩陣,這種做法有兩個(gè)缺點(diǎn):一是沒有考慮原判斷矩陣的一致性程度,即使致性很差,轉(zhuǎn)化后總是一致性模糊互補(bǔ)判斷矩陣,因而由此確定的排序向量可能是不可信的;二是由于模糊互補(bǔ)判斷矩陣的一致性定義有兩種,而一般情況下兩者并不等價(jià),那么同一個(gè)判斷矩陣在兩個(gè)不同的一致性定義下就可以得到兩個(gè)不同的權(quán)重向量,到底該以誰為基準(zhǔn)呢?這是一個(gè)問題,有待進(jìn)步的研究和解決?;诩有砸恢滦缘姆椒ㄐに臐h等在中認(rèn)為,若滿足加性致性,則根據(jù)其定義,對(duì),。可以表示為!掣;從而若滿足加性一致性,令。一月一。挖()則兩邊對(duì)求和,很容易就可計(jì)算得到二,。但是,構(gòu)造的判斷矩陣一般是不滿足一致性的,自然不能滿足()式,但。與!墮間的距離卻可以反映判斷矩陣的一致性程度,因而考慮到不同的優(yōu)化準(zhǔn)則,就會(huì)得到不同的權(quán)重計(jì)算方法。構(gòu)造多目標(biāo)最優(yōu)化模型南京理工大學(xué)碩上學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題,一半,弛,構(gòu)造優(yōu)化模型蕃薔(曠竽)琺,在、中,作者分別給出了求解各自模型的方法,這里不再重復(fù):很顯然依據(jù)同樣的原理,還可以構(gòu)造其它的優(yōu)化模型?;诔诵砸恢滦缘姆椒ǜ鶕?jù)式(),若模糊互補(bǔ)判斷矩陣滿足乘性一致性,則。而瓦,吐對(duì)上式稍加變化,即有(一口),口,。()成立,但一般情況下,并不具有乘性一致性,從而對(duì),上述等式并不全部成立,因而為了求取權(quán)值,人們構(gòu)造了如下的偏差模型:(,)月其中為判斷矩陣,為待求的權(quán)重向量,記,為模型選用的偏差函數(shù),從而構(gòu)造不同的偏差函數(shù)就形成了不同的方法。方法:法孿而。對(duì)于模型中的目標(biāo)函數(shù)(,),有以下結(jié)論南京理工大學(xué)碩士學(xué)位論文層次分析法中判斷矩陣的構(gòu)造問題(,)在中有唯一的最小值點(diǎn),且是方程組喜蚩老:):,川在中的唯解。方法:線性目標(biāo)規(guī)劃法】(,)爿()。構(gòu)造多目標(biāo)最優(yōu)化模型“蜀(卜),一“,在

注意事項(xiàng)

本文(ahp層次分析法簡(jiǎn)單例子 [層次分析法判斷矩陣])為本站會(huì)員(仙***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!