(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題三 導(dǎo)數(shù)的幾何意義及簡單應(yīng)用講義 理(重點生含解析)
(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題三 導(dǎo)數(shù)的幾何意義及簡單應(yīng)用講義 理(重點生,含解析)卷卷卷2018奇函數(shù)的定義及利用導(dǎo)數(shù)的幾何意義求切線方程·T5利用導(dǎo)數(shù)的幾何意義求切線方程·T13利用導(dǎo)數(shù)的幾何意義求參數(shù)值·T14利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性·T21(1)2017利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性·T21(1)導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)求函數(shù)極值·T11_利用導(dǎo)數(shù)的極值點求參數(shù)·T21(1)2016_導(dǎo)數(shù)的計算與幾何意義、直線方程、斜率計算公式·T16函數(shù)的奇偶性、利用導(dǎo)數(shù)的幾何意義求切線方程·T15利用導(dǎo)數(shù)公式直接求導(dǎo)·T21(1)縱向把握趨勢卷3年3考,涉及導(dǎo)數(shù)的幾何意義以及討論函數(shù)的單調(diào)性,其中利用導(dǎo)數(shù)求切線方程難度偏小,而用導(dǎo)數(shù)討論函數(shù)的單調(diào)性難度偏大預(yù)計2019年仍會以解答題的形式考查函數(shù)單調(diào)性的討論卷3年4考,涉及導(dǎo)數(shù)的運算、幾何意義以及利用導(dǎo)數(shù)求函數(shù)的極值,題型為選擇、填空題,難度適中預(yù)計2019年高考會考查利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,難度偏大卷3年3考,涉及導(dǎo)數(shù)公式及導(dǎo)數(shù)幾何意義的應(yīng)用,題型多為填空題預(yù)計2019年仍會考查導(dǎo)數(shù)幾何意義的應(yīng)用,另外,要重點關(guān)注利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性橫向把握重點1.高考對導(dǎo)數(shù)的幾何意義的考查,多在選擇題、填空題中出現(xiàn),難度較小2高考重點考查導(dǎo)數(shù)的應(yīng)用,即利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值問題,多在選擇、填空的后幾題中出現(xiàn),難度中等,有時也出現(xiàn)在解答題第一問3近幾年全國卷對定積分及其應(yīng)用的考查極少,題目一般比較簡單,但也不能忽略.導(dǎo)數(shù)的幾何意義題組全練1(2018·全國卷)設(shè)函數(shù)f (x)x3(a1)x2ax,若f (x)為奇函數(shù),則曲線yf (x)在點(0,0)處的切線方程為()Ay2xByxCy2x Dyx解析:選Df (x)x3(a1)x2ax,f (x)3x22(a1)xa.又f (x)為奇函數(shù),f (x)f (x)恒成立,即x3(a1)x2axx3(a1)x2ax恒成立,a1,f (x)3x21,f (0)1,曲線yf (x)在點(0,0)處的切線方程為yx.2過點(0,1)的直線l與曲線yln x相切,則原點到l的距離為()A1 B.C. D.解析:選C設(shè)切點為(x0,ln x0)由yln x,得y,所以直線l的斜率ky|xx0,所以切線方程為yln x0(xx0),即yxln x01.因為切線過點(0,1),則1ln x01,即x01,所以切線方程為yx1,即xy10,所以原點到l的距離d,故選C.3(2018·唐山模擬)曲線y與其在點(0,1)處的切線及直線x1所圍成的封閉圖形的面積為()A1ln 2 B22ln 2C2ln 21 Dln 2解析:選C因為y,所以y,則曲線y在(0,1)處的切線的斜率k2,切線方程為y2x1,則曲線y與其在點(0,1)處的切線及直線x1所圍成的封閉圖形的面積S2x1dx2x11dxx22x2ln(x1) 2ln 21.4(2018·全國卷)曲線y(ax1)ex在點(0,1)處的切線的斜率為2,則a_.解析:y(axa1)ex,當(dāng)x0時,ya1,a12,解得a3.答案:35已知曲線yxln x在點(1,1)處的切線與曲線yax2(a2)x1相切,則a_.解析:由yxln x,得y1,則曲線yxln x在點(1,1)處的切線斜率為2,故切線方程為y2x1,與yax2(a2)x1聯(lián)立,得ax2ax20,顯然a0,所以由a28a0a8.答案:8系統(tǒng)方法1求過切點切線問題的基本思路設(shè)曲線在(x0,y0)處的切線為l,則根據(jù)2過非切點的切線的求法設(shè)出切點坐標(biāo)(x0,f (x0),先求出在xx0處的切線方程,然后把所過點的坐標(biāo)代入即求出x0,從而得出切線方程3由曲線的切線求參數(shù)的方法已知曲線在某點處的切線求參數(shù)的關(guān)鍵是用“方程思想”來破解,先求出函數(shù)的導(dǎo)數(shù),從而求出在某點處的導(dǎo)數(shù)值;再根據(jù)導(dǎo)數(shù)的幾何意義與已知條件,建立關(guān)于參數(shù)的方程,通過解方程求出參數(shù)的值利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性多維例析角度一討論函數(shù)的單調(diào)性或求函數(shù)單調(diào)區(qū)間已知函數(shù)f (x)x22cos x,g(x)ex·(cos xsin x2x2),其中e是自然對數(shù)的底數(shù)(1)求函數(shù)g(x)的單調(diào)區(qū)間;(2)討論函數(shù)h(x)g(x)af (x)(aR)的單調(diào)性解(1)g(x)(ex)·(cos xsin x2x2)ex(cos xsin x2x2)ex(cos xsin x2x2sin xcos x2)2ex(xsin x)記p(x)xsin x,則p(x)1cos x.因為cos x1,1,所以p(x)1cos x0,所以函數(shù)p(x)在R上單調(diào)遞增而p(0)0sin 00,所以當(dāng)x<0時,p(x)<0,g(x)<0,函數(shù)g(x)單調(diào)遞減;當(dāng)x>0時,p(x)>0,g(x)>0,函數(shù)g(x)單調(diào)遞增綜上,函數(shù)g(x)的單調(diào)遞減區(qū)間為(,0),單調(diào)遞增區(qū)間為(0,)(2)因為h(x)g(x)af (x)ex(cos xsin x2x2)a(x22cos x),所以h(x)2ex(xsin x)a(2x2sin x)2(xsin x)(exa)由(1)知,當(dāng)x>0時,p(x)xsin x>0;當(dāng)x<0時,p(x)xsin x<0.當(dāng)a0時,exa>0,所以x>0時,h(x)>0,函數(shù)h(x)單調(diào)遞增;x<0時,h(x)<0,函數(shù)h(x)單調(diào)遞減當(dāng)a>0時,令h(x)2(xsin x)(exa)0,解得x1ln a,x20.若0<a<1,則ln a<0,所以x(,ln a)時,exa<0,h(x)>0,函數(shù)h(x)單調(diào)遞增;x(ln a,0)時,exa>0,h(x)<0,函數(shù)h(x)單調(diào)遞減;x(0,)時,exa>0,h(x)>0,函數(shù)h(x)單調(diào)遞增若a1,則ln a0,所以xR時,h(x)0,函數(shù)h(x)在R上單調(diào)遞增若a>1,則ln a>0,所以x(,0)時,exa<0,h(x)>0,函數(shù)h(x)單調(diào)遞增;x(0,ln a)時,exa<0,h(x)<0,函數(shù)h(x)單調(diào)遞減;x(ln a,)時,exa>0,h(x)>0,函數(shù)h(x)單調(diào)遞增綜上所述,當(dāng)a0時,函數(shù)h(x)在(0,)上單調(diào)遞增,在(,0)上單調(diào)遞減;當(dāng)0<a<1時,函數(shù)h(x)在(,ln a),(0,)上單調(diào)遞增,在(ln a,0)上單調(diào)遞減;當(dāng)a1時,函數(shù)h(x)在R上單調(diào)遞增;當(dāng)a>1時,函數(shù)h(x)在(,0),(ln a,)上單調(diào)遞增,在(0,ln a)上單調(diào)遞減類題通法討論含參函數(shù)的單調(diào)性,其本質(zhì)就是討論導(dǎo)函數(shù)符號的變化情況,所以討論的關(guān)鍵是抓住導(dǎo)函數(shù)解析式中的符號變化部分討論時要考慮參數(shù)所在的位置及參數(shù)取值對導(dǎo)函數(shù)符號的影響,一般來說需要進(jìn)行四個層次的分類:(1)最高次冪的系數(shù)是否為0;(2)導(dǎo)函數(shù)是否有變號零點;(3)導(dǎo)函數(shù)的變號零點是否在函數(shù)定義域或指定區(qū)間內(nèi);(4)導(dǎo)函數(shù)的變號零點之間的大小關(guān)系角度二已知函數(shù)的單調(diào)性求參數(shù)范圍已知函數(shù)f (x)axb(a,bR)(1)若函數(shù)f (x)在R上是增函數(shù),求實數(shù)a的取值范圍;(2)若函數(shù)f (x)在(1,3)上單調(diào),求實數(shù)a的取值范圍解(1)f (x)a,設(shè)g(x)1xaex,由題意知g(x)0在R上恒成立,即1xaex0在R上恒成立由ex>0,分離參數(shù)可得a在R上恒成立設(shè)h(x),則h(x),由h(x)>0,得x<2;由h(x)<0,得x>2,所以h(x)在(,2)上單調(diào)遞增,在(2,)上單調(diào)遞減,所以h(x)maxh(2),故a.所以a的取值范圍為.(2)函數(shù)f (x)在(1,3)上單調(diào),則函數(shù)f (x)在(1,3)上單調(diào)遞增或單調(diào)遞減若函數(shù)f (x)在(1,3)上單調(diào)遞增,則f (x)0在(1,3)上恒成立,即1xaex0在(1,3)上恒成立,所以a在(1,3)上恒成立設(shè)h(x),則h(x),所以h(x)在(1,2)上單調(diào)遞增,在(2,3)上單調(diào)遞減,所以h(x)maxh(2)(x(1,3),故a.所以a的取值范圍為,.若函數(shù)f (x)在(1,3)上單調(diào)遞減,則f (x)0在(1,3)上恒成立,即1xaex0在(1,3)上恒成立,所以a在(1,3)上恒成立設(shè)h(x),則h(x),所以h(x)在(1,2)上單調(diào)遞增,在(2,3)上單調(diào)遞減又h(1)2e,h(3).顯然2e<,所以h(x)>h(1)2e(x(1,3),所以a的取值范圍為(,2e綜上,a的取值范圍為(,2e. 類題通法由含參函數(shù)單調(diào)性求解參數(shù)范圍問題的2個關(guān)注點(1)準(zhǔn)確把握函數(shù)單調(diào)性與導(dǎo)函數(shù)符號之間的關(guān)系:若可導(dǎo)函數(shù)f (x)在區(qū)間M上單調(diào)遞增,則f (x)0在區(qū)間M上恒成立;若可導(dǎo)函數(shù)f (x)在區(qū)間M上單調(diào)遞減,則f (x)0在區(qū)間M上恒成立(2)注意參數(shù)在導(dǎo)函數(shù)解析式中的位置,先嘗試分離參數(shù),將問題的求解轉(zhuǎn)化為求解對應(yīng)函數(shù)的最值問題;若不能分離參數(shù)或分離參數(shù)后對應(yīng)函數(shù)的單調(diào)性無法利用導(dǎo)數(shù)解決,則可以直接轉(zhuǎn)化為求解含參函數(shù)的最值問題綜合訓(xùn)練1已知aR,函數(shù)f (x)(x2ax)ex(xR,e為自然對數(shù)的底數(shù))(1)當(dāng)a2時,求函數(shù)f (x)的單調(diào)遞增區(qū)間;(2)若函數(shù)f (x)在(1,1)上單調(diào)遞增,求a的取值范圍;(3)函數(shù)f (x)是否為R上的單調(diào)減函數(shù)?若是,求出a的取值范圍?若不是,請說明理由解:(1)當(dāng)a2時,f (x)(x22x)ex,所以f (x)(2x2)ex(x22x)ex(x22)ex.令f (x)>0,即(x22)ex>0,因為ex>0,所以x22>0,解得<x<.所以函數(shù)f (x)的單調(diào)遞增區(qū)間是(,)(2)因為函數(shù)f (x)在(1,1)上單調(diào)遞增,所以f (x)0對x(1,1)都成立因為f (x)(2xa)ex(x2ax)exx2(a2)xaex,所以x2(a2)xaex0對x(1,1)都成立因為ex>0,所以x2(a2)xa0,則a(x1)對x(1,1)都成立令g(x)(x1),則g(x)1>0.所以g(x)(x1)在(1,1)上單調(diào)遞增所以g(x)<g(1)(11).所以a,所以a的取值范圍是.(3)若函數(shù)f (x)在R上單調(diào)遞減,則f (x)0對xR都成立,即x2(a2)xaex0對xR都成立因為ex>0,所以x2(a2)xa0對xR都成立所以(a2)24a0,即a240,這是不可能的故函數(shù)f (x)不可能在R上單調(diào)遞減2(2018·合肥質(zhì)檢)已知f (x)ln(2x1)(aR)(1)討論f (x)的單調(diào)性;(2)若f (x)ax恒成立,求a的值解:(1)f (x)的定義域為,f (x).令g(x)2x22axa,若2x22axa0的根的判別式4a28a0,即當(dāng)0a2時,對任意x,g(x)0恒成立,即當(dāng)x時,f (x)0恒成立,f (x)在上單調(diào)遞增若2x22axa0的根的判別式>0,即當(dāng)a>2或a<0時,函數(shù)g(x)圖象的對稱軸為直線x.當(dāng)a<0時,<0,且g>0.對任意x,g(x)>0恒成立,即對任意x,f (x)>0恒成立,f (x)在上單調(diào)遞增當(dāng)a>2時,>1,且g>0.記g(x)0的兩根分別為x1,x2,且x1(a)>,x2(a)當(dāng)x(x2,)時,g(x)>0,當(dāng)x(x1,x2)時,g(x)<0.當(dāng)x(x2,)時,f (x)>0,當(dāng)x(x1,x2)時,f (x)<0.f (x)在和(x2,)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減綜上,當(dāng)a2時,f (x)在上單調(diào)遞增;當(dāng)a>2時,f (x)在和,上單調(diào)遞增,在上單調(diào)遞減(2)f (x)ax恒成立等價于對任意x,f (x)ax0恒成立令h(x)f (x)axln(2x1)ax,則h(x)0h(1)恒成立,即h(x)在x1處取得最大值h(x).由h(1)0,得a1.當(dāng)a1時,h(x),當(dāng)x時,h(x)>0;當(dāng)x(1,)時,h(x)<0.當(dāng)a1時,h(x)在上單調(diào)遞增,在(1,)上單調(diào)遞減,從而h(x)h(1)0,符合題意a1.利用導(dǎo)數(shù)研究函數(shù)的極值與最值多維例析角度一求函數(shù)的極值或最值已知函數(shù)f (x)1.(1)求函數(shù)f (x)的單調(diào)區(qū)間及極值;(2)設(shè)m>0,求函數(shù)f (x)在區(qū)間m,2m上的最大值解(1)因為函數(shù)f (x)的定義域為(0,),且f (x),由得0<x<e;由得x>e.所以函數(shù)f (x)的單調(diào)遞增區(qū)間為(0,e),單調(diào)遞減區(qū)間為(e,),且f (x)極大值f (e)1,無極小值(2)當(dāng)即0<m時,函數(shù)f (x)在區(qū)間m,2m上單調(diào)遞增,所以f (x)maxf (2m)1;當(dāng)m<e<2m,即<m<e時,函數(shù)f (x)在區(qū)間(m,e)上單調(diào)遞增,在(e,2m)上單調(diào)遞減,所以f (x)maxf (e)11;當(dāng)me時,函數(shù)f (x)在區(qū)間m,2m上單調(diào)遞減,所以f (x)maxf (m)1.綜上所述,當(dāng)0<m時,f (x)max1;當(dāng)<m<e時,f (x)max1;當(dāng)me時,f (x)max1. 類題通法求函數(shù)f (x)在閉區(qū)間上最值的策略(1)若所給的閉區(qū)間a,b不含有參數(shù),則只需對函數(shù)f (x)求導(dǎo),并求f (x)0在區(qū)間a,b內(nèi)的根,再計算使導(dǎo)數(shù)等于零的根的函數(shù)值,把該函數(shù)值與f (a),f (b)比較,其中最大的一個是最大值,最小的一個是最小值(2)若所給的閉區(qū)間a,b含有參數(shù),則需對函數(shù)f (x)求導(dǎo),通過對參數(shù)分類討論,判斷函數(shù)的單調(diào)性,從而得到函數(shù)f (x)的最值角度二已知函數(shù)的極值或最值求參數(shù)已知函數(shù)f (x)ax2(a2)xln x,其中aR.(1)當(dāng)a1時,求曲線yf (x)在點(1,f (1)處的切線方程;(2)當(dāng)a>0時,若f (x)在區(qū)間1,e上的最小值為2,求a的取值范圍解(1)當(dāng)a1時,f (x)x23xln x(x>0),所以f (x)2x3,所以f (1)2,f (1)0.所以切線方程為y20.(2)函數(shù)f (x)ax2(a2)xln x的定義域為(0,),當(dāng)a>0時,f (x)2ax(a2),令f (x)0,解得x或x.當(dāng)0<1,即a1時,f (x)在1,e上單調(diào)遞增所以f (x)在1,e上的最小值為f (1)2,符合題意;當(dāng)1<<e,即<a<1時,f (x)在上單調(diào)遞減,在上單調(diào)遞增,所以f (x)在1,e上的最小值為f <f (1)2,不合題意;當(dāng)e,即0<a時,f (x)在1,e上單調(diào)遞減,所以f (x)在1,e上的最小值為f (e)<f (1)2,不合題意綜上,實數(shù)a的取值范圍是1,)類題通法已知函數(shù)在閉區(qū)間上最值求參數(shù)的方法主要采取分類討論的思想,將導(dǎo)函數(shù)的零點與所給區(qū)間進(jìn)行比較,利用導(dǎo)數(shù)的工具性得到函數(shù)在給定區(qū)間內(nèi)的單調(diào)性,從而可求其最值,判斷所求的最值與已知條件是否相符,從而得到參數(shù)的取值范圍綜合訓(xùn)練1已知函數(shù)f (x)x33x2.(1)求曲線yf (x)在點P(1,2)處的切線方程;(2)若函數(shù)g(x)2f (x)3(1a)x26ax(a>1)在1,2上的值域為p(a),q(a),求(a)q(a)p(a)的最小值解:(1)因為f (x)x33x2,所以f (x)3x26x,所以曲線yf (x)在點P(1,2)處的切線的斜率為f (1)3,所以切線方程為y(2)3(x1),即3xy10.(2)因為g(x)2x33(a1)x26ax,所以g(x)6x26(a1)x6a6(x1)(xa)令g(x)0,得x1或xa,若1<a<2,當(dāng)x(1,a)時,g(x)<0,所以g(x)在(1,a)上單調(diào)遞減;當(dāng)x(a,2)時,g(x)>0,所以g(x)在(a,2)上單調(diào)遞增若g(1)g(2),即1<a,此時q(a)g(2)4,p(a)g(a)a33a2,所以(a)4(a33a2)a33a24,因為(a)3a26a3a(a2)<0,所以(a)在上單調(diào)遞減,所以當(dāng)a時,(a)的最小值為.若g(1)>g(2),即<a<2,此時q(a)g(1)3a1,p(a)g(a)a33a2,所以(a)3a1(a33a2)a33a23a1,因為(a)3a26a33(a1)20,所以(a)在上單調(diào)遞增,所以當(dāng)a時,(a)>.若a2,當(dāng)x1,2時,g(x)0,所以g(x)在1,2上單調(diào)遞減,所以q(a)g(1)3a1,p(a)g(2)4,所以(a)3a143a5(a2),所以(a)在2,)上的最小值為(2)1.綜上,(a)的最小值為.2已知函數(shù)f (x)x23x.(1)若a4,討論f (x)的單調(diào)性;(2)若f (x)有3個極值點,求實數(shù)a的取值范圍解:(1)因為a4時,f (x)x23x,所以f (x)2x3(x0),令f (x)>0,得x>2;令f (x)<0,得x<0或0<x<2.所以f (x)在(,0),(0,2)上單調(diào)遞減,在(2,)上單調(diào)遞增(2)由題意知,f (x)2x3(x0),設(shè)函數(shù)g(x)2x33x2a,則原條件等價于g(x)在(,0)(0,)上有3個零點,且3個零點附近的左、右兩側(cè)的函數(shù)值異號,又g(x)6x26x6x(x1),由g(x)>0,得x>1或x<0;由g(x)<0,得0<x<1.故g(x)在(,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,故原條件等價于g(x)在(,0),(0,1),(1,)上各有一個零點,令g(0)a>0,得a<0,當(dāng)a<0時,<0,g()2()33(a)a2a(1)<0,故a<0時,g(x)在(,0)上有唯一零點;令g(1)1a<0,解得a>1,故1<a<0時,g(x)在(0,1)上有唯一零點;又1<a<0時,g(2)4a>0,所以g(x)在(1,)上有唯一零點綜上可知,實數(shù)a的取值范圍是(1,0)重難增分函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用典例細(xì)解(2015·全國卷)設(shè)函數(shù)f (x)ex(2x1)axa,其中a<1,若存在唯一的整數(shù)x0使得f (x0)<0,則a的取值范圍是()A. B.C. D.學(xué)解題法一:直接法(學(xué)生用書不提供解題過程)若a0,則對任意負(fù)整數(shù)m,有f (m)em(2m1)a(m1)<0,不符合題中唯一要求,故必有0<a<1.由于f (x)ex(2x1)a,易知當(dāng)x1時f (x)e1a<0,當(dāng)x1時f (x)3ea>0,故f (x)在(,1)上單調(diào)遞減,在(1,)上單調(diào)遞增注意到f (1)e>0,所以在(1,)內(nèi)不存在正整數(shù)x0使得f (x0)<0.又f (0)1a<0,這樣我們就找到了,那個唯一的整數(shù)x0就是0.則滿足題意的充要條件是f (1)0,即a,故a的取值范圍是.法二:分離參數(shù)法(學(xué)生用書不提供解題過程)f (x)<0(x1)a>ex(2x1)當(dāng)x>1時,有a>>1,這與題設(shè)矛盾,舍去;當(dāng)x<1時,有a<.記g(x),則g(x)(x<1)當(dāng)x<0時,g(x)>0;當(dāng)0<x<1時,g(x)<0,故g(x)在(,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減,作出函數(shù)yg(x)的大致圖象如圖所示由題意知,存在唯一的整數(shù)x0使得f (x0)<0,即a<g(x0),由圖易知a的取值范圍是g(1)a1,選D.法三:幾何直觀法(學(xué)生用書提供解題過程)設(shè)g(x)ex(2x1),yaxa,由題意知存在唯一的整數(shù)x0,使得g(x0)在直線yaxa的下方因為g(x)ex(2x1),所以當(dāng)x<時,g(x)<0;當(dāng)x>時,g(x)>0,所以當(dāng)x時,g(x)min2e,因為g(0)1<0,g(1)e>0,直線yaxa恒過點(1,0),且斜率為a,畫出函數(shù)的大致圖象如圖所示,故a>g(0)1,g(1)3e1aa,解得a<1.法四:特殊值探路(學(xué)生用書提供解題過程)注意到f (0)a1<0,故x00.又x0唯一,故解得a,所以a<1(*)這是a需滿足的必要條件求導(dǎo)得f (x)ex(2x1)a.當(dāng)x1時,f (x)<a<0,f (x)在(,1上單調(diào)遞減,有f (x)f (1)0;當(dāng)x1時,f (x)3ea>0,f (x)在1,)上單調(diào)遞增,有f (x)f (1)>0.可見(*)式也是充分的于是,a的取值范圍就是a<1,選D.答案D啟思維本題考查了含參函數(shù)與導(dǎo)數(shù)、不等式的綜合問題,含參數(shù)的函數(shù)問題是高考中的難點,通常有以下兩種解題策略(1)數(shù)形結(jié)合:利用導(dǎo)數(shù)先研究函數(shù)的圖象與性質(zhì),再畫出該函數(shù)的草圖,結(jié)合圖象確定參數(shù)范圍,若原函數(shù)圖象不易做,?;癁橐粋€函數(shù)存在一點在另一個函數(shù)上方,用圖象解(2)參變分離:轉(zhuǎn)化為參數(shù)小于某個函數(shù)(或參數(shù)大于某個函數(shù)),則參數(shù)小于該函數(shù)的最大值(大于該函數(shù)的最小值),再構(gòu)造函數(shù)求解即可,要注意應(yīng)用分類討論思想(2015·全國卷)設(shè)函數(shù)f (x)是奇函數(shù)f (x)(xR)的導(dǎo)函數(shù),f (1)0,當(dāng)x>0時,xf (x)f (x)<0,則使得f (x)>0成立的x的取值范圍是()A(,1)(0,1) B(1,0)(1,)C(,1)(1,0) D(0,1)(1,)解析令g(x)(x0),則g(x),當(dāng)x>0時,xf (x)f (x)<0,g(x)<0,g(x)在(0,)上為減函數(shù),且g(1)f (1)f (1)0.f (x)為奇函數(shù),g(x)為偶函數(shù),g(x)的圖象的示意圖如圖所示當(dāng)x>0時,由f (x)>0,得g(x)>0,由圖知0<x<1,當(dāng)x<0時,由f (x)>0,得g(x)<0,由圖知x<1,使得f (x)>0成立的x的取值范圍是(,1)(0,1)答案A啟思維本題考查了導(dǎo)數(shù)運算的逆運算,通過xf (x)f (x)<0構(gòu)造函數(shù)g(x),然后利用函數(shù)的單調(diào)性及奇偶性結(jié)合圖象求解知能升級解決抽象函數(shù)導(dǎo)數(shù)問題常見構(gòu)造函數(shù)的方法(1)對于不等式xf (x)f (x)>0(或<0),構(gòu)造函數(shù)F(x)xf (x);(2)對于不等式xf (x)f (x)>0(或<0),構(gòu)造函數(shù)F(x)(x0);(3)對于不等式f (x)f (x)>0(或<0),構(gòu)造函數(shù)F(x)exf (x);(4)對于不等式f (x)f (x)>0(或<0),構(gòu)造函數(shù)F(x).增分訓(xùn)練1已知函數(shù)f (x),對xR,都有f (x)f (x)x2,在(0,)上,f (x)<x,若f (4m)f (m)84m,則實數(shù)m的取值范圍為()A2,2B2,)C0,) D(,22,)解析:選B因為對xR,都有f (x)f (x)x2,所以f (0)0,設(shè)g(x)f (x)x2,則g(x)f (x)x2,所以g(x)g(x)f (x)x2f (x)x20,又g(0)f (0)00,所以g(x)為奇函數(shù),且f (x)g(x)x2,所以f (4m)f (m)g(4m)(4m)2g(4m)g(m)84m84m,則g(4m)g(m)0,即g(4m)g(m)當(dāng)x>0時,g(x)f (x)x<0,所以g(x)在(0,)上為減函數(shù),又g(x)為奇函數(shù),所以4mm,解得m2.2(2019屆高三·南昌模擬)已知函數(shù)f (x)是函數(shù)f (x)的導(dǎo)函數(shù),f (1),對任意實數(shù)x,都有f (x)f (x)>0,則不等式f (x)<ex2的解集為()A(,e) B(1,)C(1,e) D(e,)解析:選B設(shè)g(x),則g(x).對任意實數(shù)x,都有f (x)f (x)>0,g(x)<0,即g(x)為R上的減函數(shù)g(1),由不等式f (x)<ex2,得<e2,即g(x)<g(1)g(x)為R上的減函數(shù),x>1,不等式f (x)<ex2的解集為(1,)故選B.3設(shè)f (x)x3mx22nx1的導(dǎo)函數(shù)為f (x),函數(shù)f (x)的圖象關(guān)于直線x對稱,若f (x)在1,上恒有f (x)1,則實數(shù)n的取值范圍為()A. B.C. D,)解析:選C依題意f (x)3x22mx2n,又已知函數(shù)f (x)的圖象關(guān)于直線x對稱,所以,解得m2,所以f (x)x32x22nx1,因為f (x)在1,上恒有f (x)1,所以n(x22x)在1,上恒成立,因為函數(shù)g(x)(x22x)在1,上單調(diào)遞減,即函數(shù)g(x)(x22x)在1,上的最大值為g(1),所以實數(shù)n的取值范圍為,故選C.專題跟蹤檢測(對應(yīng)配套卷P169)一、全練保分考法保大分1函數(shù)f (x)excos x的圖象在點(0,f (0)處的切線方程是()Axy10Bxy10Cxy10 Dxy10解析:選C依題意,f (0)e0cos 01,因為f (x)excos xexsin x,所以f (0)1,所以切線方程為y1x0,即xy10,故選C.2已知函數(shù)f (x)x25x2ln x,則函數(shù)f (x)的單調(diào)遞增區(qū)間是()A.和(1,) B(0,1)和(2,)C.和(2,) D(1,2)解析:選C函數(shù)f (x)x25x2ln x的定義域是(0,),且f (x)2x5.由f (x)>0,解得0<x<或x>2,故函數(shù)f (x)的單調(diào)遞增區(qū)間是和(2,)3(2018·石家莊模擬)已知f (x),其中e為自然對數(shù)的底數(shù),則()Af (2)>f (e)>f (3) Bf (3)>f (e)>f (2)Cf (e)>f (2)>f (3) Df (e)>f (3)>f (2)解析:選D由f (x),得f (x),令f (x)0,解得xe,當(dāng)x(0,e)時,f (x)>0,函數(shù)f (x)單調(diào)遞增,當(dāng)x(e,)時,f (x)<0,函數(shù)f (x)單調(diào)遞減,故f (x)在xe處取得最大值f (e),f (2)f (3)<0,f (2)<f (3),則f (e)>f (3)>f (2),故選D.4(2019屆高三·廣州調(diào)研)已知直線ykx2與曲線yxln x相切,則實數(shù)k的值為()Aln 2 B1C1ln 2 D1ln 2解析:選D由yxln x知yln x1,設(shè)切點為(x0,x0ln x0),則切線方程為yx0ln x0(ln x01)(xx0),因為切線ykx2過定點(0,2),所以2x0ln x0(ln x01)(0x0),解得x02,故k1ln 2,選D.5已知定義在R上的可導(dǎo)函數(shù)f (x)的導(dǎo)函數(shù)為f (x),滿足f (x)>f (x),且f (x3)為偶函數(shù),f (6)1,則不等式f (x)>ex的解集為()A(2,) B(0,)C(1,) D(4,)解析:選B因為f (x3)為偶函數(shù),所以f (3x)f (x3),因此f (0)f (6)1.設(shè)h(x),則原不等式即h(x)>h(0)又h(x),依題意f (x)>f (x),故h(x)>0,因此函數(shù)h(x)在R上是增函數(shù),所以由h(x)>h(0),得x>0.故選B.6已知定義在R上的函數(shù)yf (x)滿足f (x)f (x),當(dāng)x(0,2時,f (x)ln xax,當(dāng)x2,0)時,f (x)的最小值為3,則a的值等于()Ae2 BeC2 D1解析:選A因為定義在R上的函數(shù)yf (x)滿足f (x)f (x),所以yf (x)為奇函數(shù),其圖象關(guān)于原點對稱,因為當(dāng)x2,0)時,f (x)的最小值為3,所以當(dāng)x(0,2時,f (x)ln xax的最大值為3.又f (x)(0<x2),所以當(dāng)0<x<時,f (x)>0;當(dāng)<x2時,f (x)<0;所以函數(shù)f (x)ln xax在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,故f (x)maxf lna×3,解得ae2.7若函數(shù)f (x)ln xax22x存在單調(diào)遞減區(qū)間,則實數(shù)a的取值范圍是_解析:f (x)ax2,由題意知f (x)<0有實數(shù)解,x>0,ax22x1>0有實數(shù)解當(dāng)a0時,顯然滿足;當(dāng)a<0時,只需44a>0,1<a<0.綜上知a>1.答案:(1,)8已知函數(shù)f (x)exmx1的圖象為曲線C,若曲線C存在與直線yex垂直的切線,則實數(shù)m的取值范圍是_解析:函數(shù)f(x)的導(dǎo)數(shù)f(x)exm,設(shè)切點為(x0,ex0mx01),即切線斜率ke x0m,若曲線C存在與直線yex垂直的切線,則滿足(e x0m)e1,即e x0m有解,即me x0有解,e x0,m.答案:9已知x0為函數(shù)f (x)(ea)x3x的極值點,若x0(e為自然對數(shù)的底數(shù)),則實數(shù)a的取值范圍是_解析:f(x)aeax3,則f(x0)3aeax00,由于eax0>0,則a<0,此時x0ln.令t,t>0,則x0ln t,構(gòu)造函數(shù)g(t)ln t(t>0),g(t)ln t(ln t1),當(dāng)0<t<時,g(t)>0,g(t)為增函數(shù),且g(t)>0恒成立,當(dāng)t>時,g(t)<0,g(t)為減函數(shù),g(t)maxg,且g(e),因此當(dāng)x0時,0<te,即0<e,a,故實數(shù)a的取值范圍為.答案:10(2019屆高三·長春模擬)已知函數(shù)f (x)ax3bx23x(a,bR)在點A(2,f (2)處的切線方程為9xy160.(1)求函數(shù)f (x)的解析式;(2)若過點M(2,m)(m2)可作曲線yf (x)的三條切線,求實數(shù)m的取值范圍解:(1)因為f (x)ax3bx23x(a,bR),所以f (x)3ax22bx3.根據(jù)題意,得即解得所以f (x)x33x.(2)設(shè)切點為(x0,y0)(x02),則y0x3x0.因為f (x0)3x3,所以切線的斜率為3x3,則3x3,即2x6x6m0.因為過點M(2,m)(m2)可作曲線yf (x)的三條切線,所以方程2x6x6m0有三個不同的實根,設(shè)函數(shù)g(x)2x36x26m,則函數(shù)g(x)有三個零點,且g(x)6x212x,令g(x)0,得x0或x2.g(x),g(x)隨x的變化而變化的情況如下表:x(,0)0(0,2)2(2,)g(x)00g(x)極大值極小值若函數(shù)g(x)有三個零點,則需即解得6<m<2.所以實數(shù)m的取值范圍為(6,2)11(2018·成都模擬)已知函數(shù)f (x)(ax1)ln x.(1)若a2,求曲線yf (x)在點(1,f (1)處的切線l的方程;(2)設(shè)函數(shù)g(x)f (x)有兩個極值點x1,x2,其中x1(0,e,求g(x1)g(x2)的最小值解:(1)當(dāng)a2時,f (x)(2x1)ln x,則f (x)2ln xx2,f (1)2,f (1),切線l的方程為y2(x1),即4x2y30.(2)函數(shù)g(x)aln xxa,定義域為(0,),則g(x)1,令g(x)0,得x2ax10,其兩根為x1,x2,且x1x2a,x1x21,故x2,a.g(x1)g(x2)g(x1)galn x1x1a22aln x122ln x1,令h(x)22ln x.則g(x1)g(x2)minh(x)min,又h(x),當(dāng)x(0,1時,h(x)0,當(dāng)x(1,e時,h(x)<0,即當(dāng)x(0,e時,h(x)單調(diào)遞減,h(x)minh(e),故g(x1)g(x2)min.12(2018·鄭州模擬)已知函數(shù)f (x)ln xx,g(x)mx3mx(m0)(1)求曲線yf (x)在點(1,f (1)處的切線方程;(2)若對任意的x1(1,2),總存在x2(1,2),使得f (x1)g(x2),求實數(shù)m的取值范圍解:(1)易知切點為(1,1),f (x)1,切線的斜率kf (1)0,故切線方程為y1.(2)設(shè)f (x)在區(qū)間(1,2)上的值域為A,g(x)在區(qū)間(1,2)上的值域為B,則由題意可得AB.f (x)ln xx,f (x)1<0在(1,2)上恒成立,函數(shù)f (x)在區(qū)間(1,2)上單調(diào)遞減,值域A為(ln 22,1)又g(x)mx2mm(x1)(x1),當(dāng)m>0時,g(x)>0在x(1,2)上恒成立,則g(x)在(1,2)上是增函數(shù),此時g(x)在區(qū)間(1,2)上的值域B為,則解得m(ln 22)3ln 2.當(dāng)m<0時,g(x)<0在x(1,2)上恒成立,則g(x)在(1,2)上是減函數(shù),此時g(x)在區(qū)間(1,2)上的值域B為,則解得m(ln 22)ln 23.實數(shù)m的取值范圍是.二、強化壓軸考法拉開分1已知函數(shù)f (x)xsin x,x1,x2,且f (x1)f (x2),那么()Ax1x20 Bx1x20Cxx0 Dxx0解析:選D由f (x)xsin x得f (x)sin xxcos xcos x(tan xx),當(dāng)x時,f (x)0,即f (x)在上為增函數(shù),又f (x)xsin(x)xsin x,因而f (x)為偶函數(shù),當(dāng)f (x1)f (x2)時,有f (|x1|)f (|x2|),|x1|x2|,xx0,故選D.2(2018·西安八校聯(lián)考)已知函數(shù)f (x)ln xax2,若f (x)恰有兩個不同的零點,則a的取值范圍為()A. B.C. D.解析:選C函數(shù)f (x)的定義域為(0,),f (x)2ax.當(dāng)a0時,f (x)>0恒成立,函數(shù)f (x)在(0,)上單調(diào)遞增,則函數(shù)f (x)不存在兩個不同的零點當(dāng)a>0時,由f (x)0,得x,當(dāng)0<x<時,f (x)>0,函數(shù)f (x)單調(diào)遞增,當(dāng)x>時,f (x)<0,函數(shù)f (x)單調(diào)遞減,所以f (x)的最大值為f lna2ln 2a,于是要使函數(shù)f (x)恰有兩個不同的零點,則需滿足ln 2a>0,即ln 2a<1,所以0<2a<,即0<a<,所以a的取值范圍是,故選C.3已知函數(shù)f (x)xxln x,若mZ,且f (x)m(x1)>0對任意的x>1恒成立,則m的最大值為()A2 B3C4 D5解析:選B法一:因為f (x)xxln x,且f (x)m(x1)>0對任意的x>1恒成立,等價于m<在(1,)上恒成立,等價于m<min(x>1)令g(x)(x>1),所以g(x).易知g(x)0必有實根,設(shè)為x0,則x02ln x00,且g(x)在(1,x0)上單調(diào)遞減,在(x0,)上單調(diào)遞增,此時g(x)ming(x0)x0,因此m<x0,令h(x)x2ln x,可得h(3)<0,h(4)>0,又mZ,故m的最大值為3.故選B.法二:f (x)>m(x1)在(1,)上恒成立,而f (x)2ln x,得f (x)在(0,e2)上單調(diào)遞減,在(e2,)上單調(diào)遞增,由圖象可知,過點(1,0)的直線ym(x1)必在f (x)的圖象下方,設(shè)過點(1,0)且與f (x)的圖象相切的直線的斜率為k,則m<k.此時設(shè)切點為(x0,x0x0ln x0),則有k2ln x0,可得x0ln x020,令g(x)xln x2,顯然g(e)<0,g(e2)>0,所以e<x0<e2,所以1<ln x0<2,3<k<4,又m<k,且mZ,因此m的最大值為3. 故選B.4不等式b(a2)2ln b(a1)2m2m對任意的b>0,aR恒成立,則實數(shù)m的最大值為()A. B2Ce D3解析:選Bb(a2)2ln b(a1)2等價于點P(b,ln b)與點Q(a2,a1)距離的平方,易知點P,Q分別在曲線C:yln x及直線l:yx1上令f (x)ln x,則f (x),令f (x)1,得x1,故與直線l平行且與曲線C相切的直線l與曲線C的切點為(1,0),所以|PQ|min,所以m2m2,解得1m2,所以m的最大值為2.故選B.5設(shè)函數(shù)f (x)exax,g(x)ln(x3)4exa,其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0,使得f (x0)g(x0)2成立,則實數(shù)a的值為()A2ln 2 B1ln 2C1ln 2 D2ln 2解析:選D由已知得f (x)g(x)exaxln(x3)4exa,設(shè)h(x)exa4exa,u(x)xln(x3),所以h(x)exa4exa24,當(dāng)且僅當(dāng)exa2時等號成立u(x)1(x>3),令u(x)>0,得x>2;令u(x)<0,得3<x<2,所以u(x)在(3,2)上單調(diào)遞減,在(2,)上單調(diào)遞增,所以當(dāng)x2時,u(x)取得最小值為2.若存在實數(shù)x0,使得f (x0)g(x0)2成立,則當(dāng)x2時,exa2成立,所以e2a2,解得a2ln 2.6設(shè)點M(x1,f (x1)和點N(x2,g(x2)分別是函數(shù)f (x)ex1(x1)2和g(x)x1圖象上的點,且x11,x2>0,若直線MNx軸,則M,N兩點間的距離的最小值為()A1 B2C3 D4解析:選A設(shè)h(x1)|MN|,由題意知h(x1)x2x1,x11,由MNx軸可得g(x2)f (x1),即x2ex11(x11)21,所以h(x1)x2x1ex11(x11)2x11,h(x1)e x11x1,h(x1)e x111,因為h(x1)h(1)0,所以h(x1)在1,)上是增函數(shù),所以h(x1)h(1)0,因此h(x1)在1,)上是增函數(shù),所以h(x1)h(1)1,故選A.7若對任意的x,e為自然對數(shù)的底數(shù),總存在唯一的y1,1,使得ln xx1ay2ey成立,則實數(shù)a的取值范圍為()A. B.C. D.解析:選B設(shè)f (x)ln xx1a,則f (x)1.因為x,所以f (x)0,f (x)在上單調(diào)遞增,所以f (x).設(shè)g(y)y2ey,y1,1,則g(y)y(y2)ey.由g(y)<0,得1y<0;由g(y)>0,得0<y1.所以函數(shù)g(y)在1,0上單調(diào)遞減,在0,1上單調(diào)遞增,且g(1)<g(1)e.對任意的x,總存在唯一的y1,1,使得ln xx1ay2ey成立,等價于f (x)的值域是g(y)的不含極值點的單值區(qū)間的子集,故,所以<ae.故選B.8已知函數(shù)f (x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f (x)f (x3)0;當(dāng)x(0,3)時,f (x),其中e是自然對數(shù)的底數(shù),且e2.72,則方程6f (x)x0在9,9上的解的個數(shù)為()A4 B5C6 D7解析:選D依題意,當(dāng)x(0,3)時,f (x),令f (x)0得xe,故函數(shù)f (x)在區(qū)間(0,e)上單調(diào)遞增,在區(qū)間(e,3)上單調(diào)遞減,故在區(qū)間(0,3)上,f (x)maxf (e)1.又函數(shù)f (x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f (x)f (x3)0,即f (x3)f (x),f (0)0.由6f (x)x0,得f (x).在同一坐標(biāo)系內(nèi)作出函數(shù)yf (x)與y在區(qū)間9,9 上的圖象如圖所示由圖可知,函數(shù)yf (x)與y的圖象有7個交點,即方程6f (x)x0的解的個數(shù)為7.故選D.