2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題6 函數(shù)、導(dǎo)數(shù)、不等式 第13講 導(dǎo)數(shù)的簡單應(yīng)用學(xué)案 文
《2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題6 函數(shù)、導(dǎo)數(shù)、不等式 第13講 導(dǎo)數(shù)的簡單應(yīng)用學(xué)案 文》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題6 函數(shù)、導(dǎo)數(shù)、不等式 第13講 導(dǎo)數(shù)的簡單應(yīng)用學(xué)案 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題6 函數(shù)、導(dǎo)數(shù)、不等式 第13講 導(dǎo)數(shù)的簡單應(yīng)用學(xué)案 文 熱點題型 真題統(tǒng)計 命題規(guī)律 題型1:導(dǎo)數(shù)的運算及其幾何意義 2018全國卷ⅠT6;2018全國卷ⅡT13;2018全國卷ⅢT21 2017全國卷ⅠT14;2016全國卷ⅢT16;2015全國卷ⅠT14 2015全國卷ⅡT16 1.考查形式是“一小一大”,“一小”重點考查導(dǎo)數(shù)的幾何意義,“一大”一般在第(1)問,重點考查函數(shù)的單調(diào)性或單調(diào)區(qū)間. 2.小題難度較小,大題難度較大. 題型2:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 2018全國卷ⅠT21;2018全國卷ⅡT21;20
2、17全國卷ⅠT21 2017全國卷ⅡT21;2017全國卷ⅢT21;2016全國卷ⅠT12 2014全國卷ⅡT11 題型3:利用導(dǎo)數(shù)研究函數(shù)的極值(最值)問題 2016全國卷ⅡT20;2015全國卷ⅠT21;2015全國卷ⅡT21 2014全國卷ⅠT21;2014卷ⅠT21 1.導(dǎo)數(shù)的幾何意義 函數(shù)f(x)在x0處的導(dǎo)數(shù)是曲線f(x)在點P(x0,f(x0))處的切線的斜率,曲線f(x)在點P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)·(x-x0). 2.四個易誤導(dǎo)數(shù)公式 (1)(sin x)′=cos x; (2)(cos x)′=-si
3、n x; (3)(ax)′=axln a(a>0且a≠1); (4)(logax)′=(a>0,且a≠1). ■高考考法示例· 【例1】 (1)直線y=kx+1與曲線y=x3+ax+b相切于點A(1,3),則2a+b的值等于( ) A.2 B.-1 C.1 D.-2 (2)(2016·全國卷Ⅲ)已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是________. (1)C (2)2x-y=0 [(1)由題意知即 又y′=3x2+a,所以y′|x=1=a+3, 根據(jù)導(dǎo)數(shù)的幾何意義知a+3=2,則a=-1,b=
4、3, 從而2a+b=2×(-1)+3=1,故選C. (2)設(shè)x>0,則-x<0,f(-x)=ex-1+x, ∵f(x)為偶函數(shù),∴f(-x)=f(x),∴f(x)=ex-1+x. ∵當x>0時,f′(x)=ex-1+1, ∴f′(1)=e1-1+1=1+1=2. ∴曲線y=f(x)在點(1,2)處的切線方程為y-2=2(x-1), 即2x-y=0.] [方法歸納] 求曲線y=f(x)的切線方程的三種類型及方法 (1)已知切點P(x0,y0),求切線方程,求出切線的斜率f′(x0),由點斜式寫出方程; (2)已知切線的斜率k,求切線方程,設(shè)切點P(x0,y0),通過方程k=f
5、′(x0)解得x0,再由點斜式寫出方程; (3)已知過曲線上一點,求切線方程,設(shè)切點P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x0),再由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程. ■對點即時訓(xùn)練· 1.(2018·武漢模擬)函數(shù)f(x+1)=,則曲線y=f(x)在點(1,f(1))處切線的斜率為( ) A.1 B.-1 C.2 D.-2 A [由f(x+1)=,知f(x)==2-. ∴f′(x)=,且f′(1)=1. 由導(dǎo)數(shù)的幾何意義知,所求切線的斜率k=1.] 2.(2017·天津高考)已知a∈R,設(shè)函數(shù)f(x)=ax-l
6、n x的圖象在點(1,f(1))處的切線為l,則l在y軸上的截距為________. 1 [∵f′(x)=a-,∴f′(1)=a-1. 又∵f(1)=a,∴切線l的斜率為a-1,且過點(1,a), ∴切線l的方程為y-a=(a-1)(x-1). 令x=0,得y=1,故l在y軸上的截距為1.] 題型2 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 ■核心知識儲備· 1.f′(x)>0是f(x)為增函數(shù)的充分不必要條件,如函數(shù)f(x)=x3在(-∞,+∞)上單調(diào)遞增,但f′(x)≥0. 2.f′(x)≥0是f(x)為增函數(shù)的必要不充分條件,當函數(shù)在某個區(qū)間內(nèi)恒有f′(x)=0時,則f(x)為常函數(shù),函
7、數(shù)不具有單調(diào)性. 3.利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的一般步驟: (1)確定函數(shù)的定義域; (2)求導(dǎo)函數(shù)f′(x); (3)①若求單調(diào)區(qū)間(或證明單調(diào)性),只要在函數(shù)定義域(或某子區(qū)間)內(nèi)解(或證明)不等式f′(x)>0或f′(x)<0. ②若已知函數(shù)的單調(diào)性,則轉(zhuǎn)化為不等式f′(x)≥0或f′(x)≤0在單調(diào)區(qū)間上恒成立問題來求解.(注意不要遺漏等號) ■高考考法示例· ?角度一 利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性 【例2-1】 (2018·南陽模擬)設(shè)函數(shù)f(x)=(x-2)ex+ax2-ax. (1)討論f(x)的單調(diào)性; (2)設(shè)a=1,當x≥0時,f(x)≥kx-2,
8、求k的取值范圍. [解] (1)由題意得x∈R,f′(x)=(x-1)(ex+a). 當a≥0時,當x∈(-∞,1)時,f′(x)<0; 當x∈(1,+∞)時,f′(x)>0; ∴f(x)在(-∞,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增 當a<0時,令f′(x)=0得x=1,x=ln(-a) ①當a<-e時, x∈(-∞,1),f′(x)>0; 當x∈(1,ln(-a))時,f′(x)<0; 當x∈(ln(-a),+∞)時,f′(x)>0; 所以f(x)在(-∞,1),(ln(-a),+∞)單調(diào)遞增,在(1,ln(-a))單調(diào)遞減. ②當a=-e時,f′(x)≥0,所以f(x
10、,即k≤-2時, g′(x)≥0,g(x)在(0,+∞)單調(diào)遞增, g(x)≥g(0)=0,不等式f(x)≥kx-2恒成立 ②當-2-k<0,即k>-2時,g′(x)=0有一個解,設(shè)為x0根. ∴有x∈(0,x0),g′(x)<0,g(x)單調(diào)遞減;當x∈(x0,+∞)時,g′(x)>0;g(x)單調(diào)遞增,有g(shù)(x0)<g(0)=0, ∴當x≥0時,f(x)≥kx-2不恒成立; 綜上所述,k的取值范圍是(-∞,-2]. ?角度二 利用函數(shù)的單調(diào)性求參數(shù)的取值范圍 【例2-2】 (1)若函數(shù)f(x)=(x+a)ex在區(qū)間(0,+∞)上不單調(diào),則實數(shù)a的取值范圍是( ) A.(-
11、∞,-1) B.(-∞,0) C.(-1,0) D.[-1,+∞) (2)(2018·安慶模擬)若函數(shù)f(x)=x2-4ex-ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍為________. (1)A (2)(-∞,-2-2ln 2) [(1)f′(x)=ex(x+a+1),由題意,知方程ex(x+a+1)=0在(0,+∞)上至少有一個實數(shù)根,即x=-a-1>0,解得a<-1. (2)因為f(x)=x2-4ex-ax,所以f′(x)=2x-4ex-a.由題意,f′(x)=2x-4ex-a>0,即a<2x-4ex有解.令g(x)=2x-4ex,則g′(x)=2-4ex.令
12、g′(x)=0,解得x=-ln 2.當x∈(-∞,-ln 2)時,函數(shù)g(x)=2x-4ex單調(diào)遞增;當x∈(-ln 2,+∞)時,函數(shù)g(x)=2x-4ex單調(diào)遞減.所以當x=-ln 2時,g(x)=2x-4ex取得最大值-2-2ln 2,所以a<-2-2ln 2.] [方法歸納] 根據(jù)函數(shù)y=f(x)在區(qū)間(a,b)上的單調(diào)性,求參數(shù)范圍的方法 (1)若函數(shù)y=f(x)在區(qū)間(a,b)上單調(diào)遞增;轉(zhuǎn)化為f′(x)≥0在區(qū)間(a,b)上恒成立求解. (2)若函數(shù)y=f(x)在區(qū)間(a,b)上單調(diào)遞減,轉(zhuǎn)化為f′(x)≤0在區(qū)間(a,b)上恒成立求解. (3)若函數(shù)y=f(x)在區(qū)間(
13、a,b)上單調(diào),轉(zhuǎn)化為f′(x)在區(qū)間(a,b)上不變號,即f′(x)在區(qū)間(a,b)上恒正或恒負. (4)若函數(shù)y=f(x)在區(qū)間(a,b)上不單調(diào),轉(zhuǎn)化為f′(x)=0在區(qū)間(a,b)上有解. ■對點即時訓(xùn)練· 1.若函數(shù)f(x)=x2+ax+在上是增函數(shù),則a的取值范圍是( ) A.[-1,0] B.[-1,+∞) C.[0,3] D.[3,+∞) D [法一:由題意知f′(x)≥0對任意的x∈恒成立,又f′(x)=2x+a-,所以2x+a-≥0對任意的x∈恒成立,分離參數(shù)得a≥-2x,若滿足題意,需a≥max,令h(x)=-2x,x∈.因為h′(x)=--
14、2,所以當x∈時,h′(x)<0,即h(x)在上單調(diào)遞減,所以h(x)<h=3,故a≥3. 法二:當a=0時,檢驗f(x)是否為增函數(shù),當a=0時, f(x)=x2+,f=+2=,f(1)=1+1=2, f>f(1)與函數(shù)是增函數(shù)矛盾,排除A、B、C.故選D.] 2.(2018·廣州模擬)已知x=1是f(x)=2x++ln x的一個極值點. (1)求函數(shù)f(x)的單調(diào)遞減區(qū)間. (2)設(shè)函數(shù)g(x)=f(x)-,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍. [解] (1)f(x)的定義域為(0,+∞), f′(x)=2-+,x∈(0,+∞). 因為x=1是f(x
15、)=2x++ln x的一個極值點,
所以f′(1)=0,即2-b+1=0.
解得b=3,經(jīng)檢驗,適合題意,所以b=3.
因為f′(x)=2-+=,
解f′(x)<0,得0 16、3,所以a≥-3.
題型3 利用導(dǎo)數(shù)研究函數(shù)的極值(最值)問題
■核心知識儲備·
1.若在x0附近左側(cè)f′(x)>0,右側(cè)f′(x)<0,則f(x0)為函數(shù)f(x)的極大值;若在x0附近左側(cè)f′(x)<0,右側(cè)f′(x)>0,則f(x0)為函數(shù)f(x)的極小值.
2.設(shè)函數(shù)y=f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則f(x)在[a,b]上必有最大值和最小值且在極值點或端點處取得.
■高考考法示例·
【例3】 (2017·山東高考)已知函數(shù)f(x)=x3-ax2,a∈R.
(1)當a=2時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)設(shè)函數(shù)g(x)=f( 17、x)+(x-a)cos x-sin x,討論g(x)的單調(diào)性并判斷有無極值,有極值時求出極值.
[思路點撥] (1)→→
(2)→
[解] (1)由題意f′(x)=x2-ax,
所以當a=2時,f(3)=0,f′(x)=x2-2x,
所以f′(3)=3,
因此曲線y=f(x)在點(3,f(3))處的切線方程是y=3(x-3),
即3x-y-9=0.
(2)因為g(x)=f(x)+(x-a)cos x-sin x,
所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x
=x(x-a)-(x-a)sin x
=(x-a)(x-sin x),
令h(x)= 18、x-sin x,則h′(x)=1-cos x≥0,所以h(x)在R上單調(diào)遞增,因為h(0)=0,
所以當x>0時,h(x)>0;當x<0時,h(x)<0.
①當a<0時,g′(x)=(x-a)(x-sin x),
當x∈(-∞,a)時,x-a<0,g′(x)>0,g(x)單調(diào)遞增;
當x∈(a,0)時,x-a>0,g′(x)<0,g(x)單調(diào)遞減;
當x∈(0,+∞)時,x-a>0,g′(x)>0,g(x)單調(diào)遞增.
所以當x=a時g(x)取到極大值,極大值是g(a)=-a3-sin a,
當x=0時g(x)取到極小值,極小值是g(0)=-a.
②當a=0時,g′(x)=x(x 19、-sin x),
當x∈(-∞,+∞)時,g′(x)≥0,
所以g(x)在(-∞,+∞)上單調(diào)遞增,
g(x)無極大值也無極小值.
③當a>0時,g′(x)=(x-a)(x-sin x),
當x∈(-∞,0)時,x-a<0,g′(x)>0,g(x)單調(diào)遞增;
當x∈(0,a)時,x-a<0,g′(x)<0,g(x)單調(diào)遞減;
當x∈(a,+∞)時,x-a>0,g′(x)>0,g(x)單調(diào)遞增.
所以當x=0時g(x)取到極大值,極大值是g(0)=-a;
當x=a時g(x)取到極小值,極小值是g(a)=-a3-sin a;
綜上所述:
當a<0時,函數(shù)g(x)在(-∞,a) 20、和(0,+∞)上單調(diào)遞增,在(a,0)上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是g(a)=-a3-sin a,極小值是g(0)=-a;
當a=0時,函數(shù)g(x)在(-∞,+∞)上單調(diào)遞增,無極值.
當a>0時,函數(shù)g(x)在(-∞,0)和(a,+∞)上單調(diào)遞增,在(0,a)上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是g(0)=-a,極小值是g(a)=-a3-sin a.
[方法歸納] 利用導(dǎo)數(shù)研究函數(shù)極值、最值的方法
(1)若求極值,則先求方程f′(x)=0的根,再檢查f′(x)在方程根的左右函數(shù)值的符號.
(2)若探究極值點個數(shù),則探求方程f′(x)=0在所給范圍內(nèi)實根的 21、個數(shù).
(3)若已知極值大小或存在情況,則轉(zhuǎn)化為已知方程f′(x)=0根的大小或存在情況來求解.
(4)求函數(shù)f(x)在閉區(qū)間[a,b]的最值時,在得到極值的基礎(chǔ)上,結(jié)合區(qū)間端點的函數(shù)值f(a),f(b)與f(x)的各極值進行比較,從而得到函數(shù)的最值.
(教師備選)
(2018·太原模擬)已知函數(shù)f(x)=ln x+ax2+bx(其中a,b為常數(shù)且a≠0)在x=1處取得極值.
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,e]上的最大值為1,求a的值.
[解] (1)因為f(x)=ln x+ax2+bx,
所以f(x)的定義域為(0,+∞),f′(x)=+2 22、ax+b,
因為函數(shù)f(x)=ln x+ax2+bx在x=1處取得極值,
所以f′(1)=1+2a+b=0,∴b=-2a-1.
又a=1,所以b=-3,則f′(x)=,
f′(x),f(x)隨x的變化情況如下表:
x
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
極大值
極小值
所以f(x)的單調(diào)遞增區(qū)間為,(1,+∞),
單調(diào)遞減區(qū)間為.
(2)由(1)知f′(x)=,
今f′(x)=0,得x1=1,x2=,
因為f(x)在x=1處取得極值,所以x2=≠x1=1,
當<0時,f(x)在(0,1)上單調(diào)遞增 23、,在(1,e]上單調(diào)遞減,
所以f(x)在區(qū)間(0,e]上的最大值為f(1),
令f(1)=1,解得a=-2,
當a>0時,x2=>0,
當<1時,f(x)在上單調(diào)遞增,
在上單調(diào)遞減,[1,e]上單調(diào)遞增,
所以最大值可能在x=或x=e處取得,
而f=ln+a2-(2a+1)=ln--1<0,
所以f(e)=ln e+ae2-(2a+1)e=1,解得a=,
當1<<e時,f(x)在區(qū)間(0,1)上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
所以最大值可能在x=1或x=e處取得,
而f(1)=ln 1+a-(2a+1)<0,
所以f(e)=ln e+ae2-(2a+1)e= 24、1,
解得a=,與1< 25、f(0))處的切線方程為y=1.
(2)設(shè)h(x)=ex(cos x-sin x)-1,則h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
當x∈時,h′(x)<0,
所以h(x)在區(qū)間上單調(diào)遞減.
所以對任意x∈有h(x) 26、y=-x
C.y=2x D.y=x
D [因為f(x)為奇函數(shù),所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f′(x)=3x2+1,f′(0)=1,所以曲線y=f(x)在點(0,0)處的切線方程為y=x.]
2.(2016·全國卷Ⅰ)若函數(shù)f(x)=x-sin 2x+asin x在(-∞,+∞)單調(diào)遞增,則a的取值范圍是( )
A.[-1,1] B.
C. D.
C [取a=-1,則f(x)=x-sin 2x-sin x,f′(x)=1-cos 2x-cos x,但f′(0)=1--1=-<0,不具備在(-∞,+∞)單調(diào)遞增的條件,故排除A,B, 27、D.故選C.]
3.(2017·全國卷Ⅱ)若x=-2是函數(shù)f(x)=(x2+ax-1)ex-1的極值點,則f(x)的極小值為( )
A.-1 B.-2e-3
C.5e-3 D.1
A [函數(shù)f(x)=(x2+ax-1)ex-1,
則f′(x)=(2x+a)ex-1+(x2+ax-1)·ex-1
=ex-1·[x2+(a+2)x+a-1].
由x=-2是函數(shù)f(x)的極值點得
f′(-2)=e-3·(4-2a-4+a-1)=(-a-1)e-3=0,
所以a=-1.
所以f(x)=(x2-x-1)ex-1,f′(x)=ex-1·(x2+x-2).
由ex-1>0恒成 28、立,得x=-2或x=1時,f′(x)=0,且x<-2時,f′(x)>0;
-2 29、g(x)的圖象的示意圖與性質(zhì)得出使f(x)>0成立的x的取值范圍.
設(shè)y=g(x)=(x≠0),則g′(x)=,當x>0時,xf′(x)-f(x)<0,
∴g′(x)<0,∴g(x)在(0,+∞)上為減函數(shù),且g(1)=f(1)=-f(-1)=0.
∵f(x)為奇函數(shù),∴g(x)為偶函數(shù),
∴g(x)的圖象的示意圖如圖所示.
當x>0,g(x)>0時,f(x)>0,0
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文部編版《端午粽》課件2
- 秋的思念最新課件
- 20套清新商務(wù)日歷圖表合集一課件
- 簡歷篩選技巧教學(xué)課件
- 《圖形創(chuàng)意設(shè)計》【初中美術(shù)教學(xué)課件】
- 部編新版人教版一年級下冊姓氏歌課件
- 西師大版六年級數(shù)學(xué)下冊總復(fù)習(5)---比和比例
- 藥物過敏反應(yīng)及處理流程ppt
- 人教版《道德與法治》九年級上冊42《凝聚法治共識》課件_參考
- 蘇教版二年級數(shù)學(xué)下冊第六單元--兩、三位數(shù)的加法和減法第7課時---練習七課件
- 蘇教版小學(xué)數(shù)學(xué)五年級下冊《方程的認識》課件
- 國培計劃項目匯報模板
- 藏羚羊跪拜王春華
- 危重病人護理查房
- 中醫(yī)體質(zhì)分類及其辨證調(diào)護