2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題一 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù) 第五講 導(dǎo)數(shù)的應(yīng)用(一)課后訓(xùn)練 文
-
資源ID:105911057
資源大小:72KB
全文頁數(shù):6頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題一 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù) 第五講 導(dǎo)數(shù)的應(yīng)用(一)課后訓(xùn)練 文
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題一 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù) 第五講 導(dǎo)數(shù)的應(yīng)用(一)課后訓(xùn)練 文一、選擇題1曲線yex在點(2,e2)處的切線與坐標(biāo)軸所圍成的三角形的面積為()Ae2B2e2Ce2D解析:由題意可得yex,則所求切線的斜率ke2,則所求切線方程為ye2e2(x2)即ye2xe2,S×1×e2.答案:D2(2018·西寧一檢)設(shè)曲線y在點(3,2)處的切線與直線axy10垂直,則a()A2B2CD解析:由y得曲線在點(3,2)處的切線斜率為,又切線與直線axy10垂直,則a2.答案:A3(2018·北京模擬)曲線f(x)xln x在點(1,f(1)處的切線的傾斜角為()ABCD解析:因為f(x)xln x,所以f(x)ln xx·ln x1,所以f(1)1,所以曲線f(x)xln x在點(1,f(1)處的切線的傾斜角為.答案:B4已知函數(shù)f(x)x25x2ln x,則函數(shù)f(x)的單調(diào)遞增區(qū)間是()A和(1,)B(0,1)和(2,)C和(2,)D(1,2)解析:函數(shù)f(x)x25x2ln x的定義域是(0,),令f(x)2x5>0,解得0<x<或x>2,故函數(shù)f(x)的單調(diào)遞增區(qū)間是和(2,)答案:C5函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)f(2x),且當(dāng)x(,1)時,(x1)f(x)<0,設(shè)af(0),bf,cf(3),則a,b,c的大小關(guān)系為()Aa<b<cBc<b<aCc<a<bDb<c<a解析:因為當(dāng)x(,1)時,(x1)f(x)<0,所以f(x)>0,所以函數(shù)f(x)在(,1)上是單調(diào)遞增函數(shù),所以af(0)<fb,又f(x)f(2x),所以cf(3)f(1),所以cf(1)<f(0)a,所以c<a<b,故選C.答案:C6已知函數(shù)f(x)x33x29x1,若f(x)在區(qū)間k,2上的最大值為28,則實數(shù)k的取值范圍為()A3,)B(3,)C(,3)D(,3解析:由題意知f(x)3x26x9,令f(x)0,解得x1或x3,所以f(x),f(x)隨x的變化情況如下表:x(,3)3(3,1)1(1,)f(x)00f(x)極大值極小值又f(3)28,f(1)4,f(2)3,f(x)在區(qū)間k,2上的最大值為28,所以k3.答案:D7已知函數(shù)f(x)k,若x2是函數(shù)f(x)的唯一一個極值點,則實數(shù)k的取值范圍為()A(,eB0,eC(,e)D0,e)解析:f(x)k(x>0)設(shè)g(x),則g(x),則g(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增g(x)在(0,)上有最小值,為g(1)e,結(jié)合g(x)與yk的圖象可知,要滿足題意,只需ke.答案:A8已知函數(shù)f(x)ln xnx(n>0)的最大值為g(n),則使g(n)n2>0成立的n的取值范圍為()A(0,1)B(0,)CD解析:易知f(x)的定義域為(0,),f(x)n(x>0,n>0),當(dāng)x時,f(x)>0;當(dāng)x時,f(x)<0,所以f(x)在上單調(diào)遞增,在上單調(diào)遞減,所以f(x)的最大值g(n)fln n1.設(shè)h(n)g(n)n2ln nn1.因為h(n)1<0,所以h(n)在(0,)上單調(diào)遞減又h(1)0,所以當(dāng)0<n<1時,h(n)>h(1)0,故使g(n)n2>0成立的n的取值范圍為(0,1),故選A.答案:A二、填空題9(2018·高考全國卷)曲線y2ln x在點(1,0)處的切線方程為_解析:因為y,y|x12,所以切線方程為y02(x1),即y2x2.答案:y2x210(2016·高考全國卷)已知f(x)為偶函數(shù),當(dāng)x0時,f(x)ex1x,則曲線yf(x)在點(1,2)處的切線方程是_解析:設(shè)x>0,則x<0,f(x)ex1x.f(x)為偶函數(shù),f(x)f(x),f(x)ex1x.當(dāng)x>0時,f(x)ex11,f(1)e111112.曲線yf(x)在點(1,2)處的切線方程為y22(x1),即2xy0.答案:2xy011(2018·太原二模)若函數(shù)f(x)sin xax為R上的減函數(shù),則實數(shù)a的取值范圍是_解析:f(x)cos xa,由題意可知,f(x)0對任意的xR都成立,a1,故實數(shù)a的取值范圍是(,1答案:(,112(2018·新鄉(xiāng)一模)設(shè)x1,x2是函數(shù)f(x)x32ax2a2x的兩個極值點,若x1<2<x2,則實數(shù)a的取值范圍是_解析:由題意得f(x)3x24axa2的兩個零點x1,x2滿足x1<2<x2,所以f(2)128aa2<0,解得2<a<6.答案:(2,6)三、解答題13已知函數(shù)f(x)x1(aR,e為自然對數(shù)的底數(shù))(1)若曲線yf(x)在點(1,f(1)處的切線平行于x軸,求a的值;(2)求函數(shù)f(x)的極值解析:(1)由f(x)x1,得f(x)1.又曲線yf(x)在點(1,f(1)處的切線平行于x軸,得f(1)0,即10,解得ae.(2)f(x)1,當(dāng)a0時,f(x)>0,f(x)為(,)上的增函數(shù),所以函數(shù)f(x)無極值當(dāng)a>0時,令f(x)0,得exa,即xln ax(,ln a)時,f(x)<0;x(ln a,)時,f(x)>0,所以f(x)在(,ln a)上單調(diào)遞減,在(ln a,)上單調(diào)遞增,故f(x)在xln a處取得極小值,且極小值為f(ln a)ln a,無極大值綜上,當(dāng)a0時,函數(shù)f(x)無極值;當(dāng)a>0時,f(x)在xln a處取得極小值ln a,無極大值14(2018·福州質(zhì)檢)已知函數(shù)f(x)aln xx2ax(aR)(1)若x3是f(x)的極值點,求f(x)的單調(diào)區(qū)間;(2)求g(x)f(x)2x在區(qū)間1,e上的最小值h(a)解析:(1)f(x)的定義域為(0,),f(x)2xa,因為x3是f(x)的極值點,所以f(3)0,解得a9,所以f(x),所以當(dāng)0<x<或x>3時,f(x)>0;當(dāng)<x<3時,f(x)<0.所以f(x)的單調(diào)遞增區(qū)間為,(3,),單調(diào)遞減區(qū)間為.(2)g(x)aln xx2ax2x,則g(x)2.令g(x)0,得x或x1.當(dāng)1,即a2時,g(x)在1,e上為增函數(shù),h(a)ming(1)a1;當(dāng)1<<e,即2<a<2e時,g(x)在上為減函數(shù),在上為增函數(shù),h(a)mingaln a2a;當(dāng)e,即a2e時,g(x)在1,e上為減函數(shù),h(a)ming(e)(1e)ae22e.綜上,h(a)min