2022年高三數(shù)學(xué)上學(xué)期期中試題 理 新人教A版
-
資源ID:105834416
資源大小:127.52KB
全文頁(yè)數(shù):10頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2022年高三數(shù)學(xué)上學(xué)期期中試題 理 新人教A版
2022年高三數(shù)學(xué)上學(xué)期期中試題 理 新人教A版一、 選擇題:本大題共10小題,每小題5分,共50分在每小題給出的四項(xiàng)中,只有一項(xiàng)是符合題目要求的1設(shè)集合,則 ( )(A)(B) (C) (D)2在中,“”是“”的 ( )(A)充分不必要條件 (B)必要不充分條件 (C)充分必要條件 (D)既不充分也不必要條件(第3題)3. 某幾何體的三視圖如圖,則這個(gè)幾何體的體積是 ( )A B C1 D24函數(shù)的零點(diǎn)個(gè)數(shù)為 ( )(A)1 (B) 2(C) 3(D) 4 5設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題中正確的是 ( )(A)若且,則 (B)若且,則(C)若且,則 (D)若且,則 6將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再向左平移個(gè)單位,縱坐標(biāo)不變,所得函數(shù)圖象的一條對(duì)稱軸的方程是 ( )(A) (B) (C) (D)7. 定義在上的函數(shù)滿足,且時(shí),則( ) A. B. C. D.8. 設(shè)、分別是雙曲線的左、右焦點(diǎn),若雙曲線上存在點(diǎn),使得,則雙曲線的離心率為 ( )A2BCD9. 已知向量滿足 與的夾角為, 則的最大值為 ( )(A) (B) (C) (D)10. 記數(shù)列的前項(xiàng)和為,若不等式對(duì)任意等差數(shù)列及任意正整數(shù)都成立,則實(shí)數(shù)的最大值為( )A B C D二、 填空題:本大題共7小題,每小題4分,共28分11. 等比數(shù)列中,已知 ,則= 12.已知向量,若,則= 13. 已知函數(shù),則 14已知直線直線與圓相交于M,N兩點(diǎn),若,則k的取值范圍是 15.設(shè)滿足約束條件若目標(biāo)函數(shù)的最大值為1,則的最小值為 16.在棱長(zhǎng)為1的正方體中,在面中取一點(diǎn),使最小,則最小值為 17.過(guò)橢圓上一點(diǎn)作圓的兩條切線,點(diǎn)為切點(diǎn).過(guò)的直線與軸, 軸分別交于點(diǎn)兩點(diǎn), 則的面積的最小值為 三、解答題:本大題共5小題,共72分解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟18.(本小題滿分14分)在ABC中,角A,B,C所對(duì)的邊分別為a,b,c若,(1)求的值; (2)求函數(shù)的值域19.(本小題滿分14分)已知數(shù)列的前項(xiàng)和,數(shù)列滿足,()()求數(shù)列、的通項(xiàng)公式;()記數(shù)列的前項(xiàng)和為,求<xx時(shí)的的最大值20.(本小題滿分14分)如圖所示,在直三棱柱中,平面為的中點(diǎn)()求證:平面; ()求證:平面;()在上是否存在一點(diǎn),使得=45°,若存在,試確定的位置,并判斷平面與平面是否垂直?若不存在,請(qǐng)說(shuō)明理由21(本小題滿分15分)已知拋物線y2=2px (p>0)上點(diǎn)T(3,t)到焦點(diǎn)F的距離為4.()求t,p的值;()設(shè)A、B是拋物線上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且(其中 O為坐標(biāo)原點(diǎn)).()求證:直線AB必過(guò)定點(diǎn),并求出該定點(diǎn)P的坐標(biāo);()過(guò)點(diǎn)P作AB的垂線與拋物線交于C、D兩點(diǎn),求四邊形ACBD面積的最小值.22.(本小題共15分)已知函數(shù),(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;(3)求函數(shù)在區(qū)間上的最大值.高三數(shù)學(xué)(理)答題卷一、選擇題:本大題共10小題,每小題5分,共50分在每小題給出的四項(xiàng)中,只有一項(xiàng)是符合題目要求的題號(hào)12345678910答案二、填空題:本大題共7小題,每小題4分,共28分11、 12、 13、 14、 15、 16、 17、 三、解答題:本大題共5小題,共72分解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟18.(本小題滿分14分)在ABC中,角A,B,C所對(duì)的邊分別為a,b,c若,(1)求的值; (2)求函數(shù)的值域19.(本小題滿分14分)已知數(shù)列的前項(xiàng)和,數(shù)列滿足,()()求數(shù)列、的通項(xiàng)公式;()記數(shù)列的前項(xiàng)和為,求<xx時(shí)的的最大值20.(本小題滿分14分)如圖所示,在直三棱柱中,平面為的中點(diǎn)()求證:平面()求證:平面;()在上是否存在一點(diǎn),使得=45°,若存在,試確定的位置,并判斷平面與平面是否垂直?若不存在,請(qǐng)說(shuō)明理由21(本小題滿分15分)已知拋物線y2=2px (p>0)上點(diǎn)T(3,t)到焦點(diǎn)F的距離為4.()求t,p的值;()設(shè)A、B是拋物線上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且(其中 O為坐標(biāo)原點(diǎn)).()求證:直線AB必過(guò)定點(diǎn),并求出該定點(diǎn)P的坐標(biāo);()過(guò)點(diǎn)P作AB的垂線與拋物線交于C、D兩點(diǎn),求四邊形ACBD面積的最小值.22.(本小題共15分)已知函數(shù),(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;(3)求函數(shù)在區(qū)間上的最大值.高三數(shù)學(xué)(理)期中考試答案-10 ACBBC ACDDD 18(1)因?yàn)椋?3分由余弦定理得,因?yàn)椋?6分(2)因?yàn)?,所以?8分所以因?yàn)?,所?10分因?yàn)椋?12分由于,所以,所以的值域?yàn)?14分19.()當(dāng)時(shí),又, 又,所以是公比為3的等比數(shù)列,() 得, 所以 由得,所以的最大值為620.證明:()如圖,連接與相交于,則為的中點(diǎn)連結(jié),又為的中點(diǎn),又平面,平面 (),四邊形為正方形,又面,面,又在直棱柱中, 平面()當(dāng)點(diǎn)為的中點(diǎn)時(shí),=45°,且平面平面設(shè)AB=a,CE=x, ,在中,由余弦定理,得,即 ,x=a,即E是的中點(diǎn)、分別為、的中點(diǎn),平面,平面又平面,平面平面21.:()由已知得,所以拋物線方程為y2=4x,代入可解得. 4分() ()設(shè)直線AB的方程為,、 ,聯(lián)立得,則,.6分由得:或(舍去),即,所以直線AB過(guò)定點(diǎn);10分()由()得,同理得,則四邊形ACBD面積令,則是關(guān)于的增函數(shù),故.當(dāng)且僅當(dāng)時(shí)取到最小值96. 15分22.