2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理

上傳人:xt****7 文檔編號:105828474 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大小:79KB
收藏 版權(quán)申訴 舉報 下載
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理_第1頁
第1頁 / 共7頁
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理_第2頁
第2頁 / 共7頁
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第1講 基礎(chǔ)小題部分增分強(qiáng)化練 理 一、選擇題 1.(2018·高考全國卷Ⅲ)若sin α=,則cos 2α= (  ) A.           B. C.- D.- 解析:∵sin α=,∴cos 2α=1-2sin2α=1-2×2=.故選B. 答案:B 2.(2018·高考天津卷)將函數(shù)y=sin(2x+)的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù) (  ) A.在區(qū)間[-,]上單調(diào)遞增 B.在區(qū)間[-,0]上單調(diào)遞減 C.在區(qū)間[,]上單調(diào)遞增 D.在區(qū)間[,π]上單

2、調(diào)遞減 解析:y=sin(2x+)=sin 2(x+),將其圖象向右平移個單位長度,得到函數(shù)y=sin 2x的圖象.由2kπ-≤2x≤2kπ+,k∈Z,得kπ-≤x≤kπ+, k∈Z.令k=0,可知函數(shù)y=sin 2x在區(qū)間[-,]上單調(diào)遞增.故選A. 答案:A 3.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,若b+c=2a,3sin A=5sin B,則角C= (  ) A. B. C. D. 解析:由3sin A=5sin B,得3a=5b. 又因為b+c=2a, 所以a=b,c=b, 所以cos C===-.因為C∈(0,π),所

3、以C=. 答案:A 4.若先將函數(shù)y=sin(4x+)圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移個單位長度,則所得函數(shù)圖象的一條對稱軸方程是 (  ) A.x= B.x= C.x= D.x= 解析:由題意知變換后的圖象對應(yīng)的函數(shù)解析式為y=sin(2x+)=cos 2x,易知其一條對稱軸的方程為x=,故選D. 答案:D 5.(2018·湘中名校高三聯(lián)考)已知函數(shù)f(x)=sin(ωx-)+,ω>0,x∈R,且f(α)=-,f(β)=.若|α-β|的最小值為,則函數(shù)f(x)的單調(diào)遞增區(qū)間為 (  ) A.[-+2kπ,π+2kπ]

4、,k∈Z B.[-+3kπ,π+3kπ],k∈Z C.[π+2kπ,+2kπ],k∈Z D.[π+3kπ,+3kπ],k∈Z 解析:由f(α)=-,f(β)=,|α-β|的最小值為,知=, 即T=3π=,所以ω=, 所以f(x)=sin(x-)+, 由-+2kπ≤x-≤+2kπ(k∈Z), 得-+3kπ≤x≤π+3kπ(k∈Z),故選B. 答案:B 6.(2018·高考全國卷Ⅰ)已知函數(shù)f(x)=2cos2x-sin2x+2,則 (  ) A.f(x)的最小正周期為π,最大值為3 B.f(x)的最小正周期為π,最大值為4 C.f(x)的最小正周期為2π,最大值

5、為3 D.f(x)的最小正周期為2π,最大值為4 解析:∵f(x)=2cos2x-sin2x+2=1+cos 2x-+2=cos 2x+,∴f(x)的最小正周期為π,最大值為4.故選B. 答案:B 7.在△ABC中,已知2acos B=c,sin Asin B·(2-cos C)=sin2+,則△ABC為 (  ) A.等邊三角形 B.鈍角三角形 C.銳角非等邊三角形 D.等腰直角三角形 解析:由2acos B=c?2a·=c?a2=b2,所以a=b. 因為sin Asin B(2-cos C)=sin2+, 所以2sin Asin B(2-cos C)-2+1-2si

6、n2=0, 所以2sin Asin B(2-cos C)-2+cos C=0, 所以(2-cos C)(2sin Asin B-1)=0, 因為cos C≠2,所以sin Asin B=, 因為a=b,所以sin2A=,所以A=B=, 所以C=,所以△ABC是等腰直角三角形,故選D. 答案:D 8.三角函數(shù)f(x)=sin+cos 2x的振幅和最小正周期分別是 (  ) A., B.,π C., D.,π 解析:f(x)=sin cos 2x-cos sin 2x+cos 2x=cos 2x-sin 2x==cos,故選B. 答案:B 9.已知f(x)=2sin(

7、2x+),若將它的圖象向右平移個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的圖象的一條對稱軸的方程為 (  ) A.x= B.x= C.x= D.x= 解析:由題意知g(x)=2sin[2(x-)+]=2sin(2x-),令2x-=+kπ,k∈Z,解得x=+π,k∈Z,當(dāng)k=0時,x=,即函數(shù)g(x)的圖象的一條對稱軸的方程為x=,故選C. 答案:C 10.(2018·昆明模擬)在△ABC中,角A,B,C的對邊分別為a,b,c.若滿足c=,acos C=csin A的△ABC有兩個,則邊長BC的取值范圍是 (  ) A.(1,) B.(1,) C.(,2) D

8、.(,2) 解析:因為acos C=csin A,由正弦定理得sin Acos C=sin Csin A,易知sin A≠0,故tan C=1,所以C=.過點B作AC邊上的高BD(圖略),垂足為D,則BD=BC,要使?jié)M足條件的△ABC有兩個,則BC>>BC,解得

9、.在區(qū)間[-,]上單調(diào)遞減 D.在區(qū)間[-,]上單調(diào)遞增 解析:依題意得ω=2,f(x)=sin(2x+φ),平移后得到函數(shù)y=sin(2x+φ+)的圖象,且過點P(0,1),所以sin(φ+)=1, 因為-π<φ<0,所以φ=-,所以f(x)=sin(2x-),易知函數(shù)f(x)在[-,]上單調(diào)遞增,故選B. 答案:B 12.張曉華同學(xué)騎電動自行車以24 km/h的速度沿著正北方向的公路行駛,在點A處望見電視塔S在電動車的北偏東30°方向上,15 min后到點B處望見電視塔在電動車的北偏東75°方向上,則電動車在點B時與電視塔S的距離是 (  ) A.2 km B.3 km C

10、.3 km D.2 km 解析:畫出示意圖如圖,由條件知AB=24×=6. 在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°, 所以∠ASB=45°. 由正弦定理知=, 所以BS==3. 答案:B 二、填空題 13.在△ABC中,a=4,b=5,c=6,則=________. 解析:由正弦定理得=,由余弦定理得cos A=,∵a=4,b=5,c=6, ∴==2··cos A=2××=1. 答案:1 14.(2018·高考江蘇卷)已知函數(shù)y=sin(2x+φ)(-<φ<)的圖象關(guān)于直線x=對稱,則φ的值為________. 解析:由函數(shù)y=

11、sin(2x+φ)(-<φ<)的圖象關(guān)于直線x=對稱,得sin(+φ)=±1,因為-<φ<,所以<+φ<,則+φ=,φ=-. 答案:- 15.(2018·高考全國卷Ⅰ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知 bsin C+csin B=4asin Bsin C,b2+c2-a2=8,則△ABC的面積為________. 解析:∵bsin C+csin B=4asin Bsin C, ∴由正弦定理得 sin Bsin C+sin Csin B=4sin Asin Bsin C. 又sin Bsin C>0,∴sin A=. 由余弦定理得cos A===>0,

12、 ∴cos A=,bc==, ∴S△ABC=bcsin A=××=. 答案: 16.關(guān)于函數(shù)f(x)=cos 2x-2sin xcos x有下列命題: ①若存在x1,x2有x1-x2=π,則f(x1)=f(x2)成立; ②f(x)在區(qū)間[-,]上單調(diào)遞增; ③函數(shù)f(x)的圖象關(guān)于點(,0)中心對稱; ④將函數(shù)f(x)的圖象向左平移個單位后將與y=2sin 2x的圖象重合. 其中正確命題的序號是________.(把你認(rèn)為正確命題的序號都填上) 解析:f(x)=cos 2x-2sin xcos x=2cos(2x+),可知函數(shù)的最小正周期T=π,所以①正確;當(dāng)x∈[-,]時,2x+∈[0,π],因為y=cos x在[0,π]上是減函數(shù),所以f(x)在區(qū)間[-,]上單調(diào)遞減,所以②錯誤;因為f()= 2cos =0,所以③正確;因為f(x+)=2cos(2x++)=-2cos(2x+)≠2sin 2x,故④錯誤,故答案為①③. 答案:①③

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!