高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2

上傳人:xt****7 文檔編號(hào):105486804 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):9 大小:70.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2_第1頁
第1頁 / 共9頁
高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2_第2頁
第2頁 / 共9頁
高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高中數(shù)學(xué) 綜合素質(zhì)測(cè)試 新人教B版選修2-2 一、選擇題(本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.) 1.(xx·江西理,1)是z的共軛復(fù)數(shù).若z+=2,(z-)i=2(i為虛數(shù)單位),則z=(  ) A.1+i  B.-1-i C.-1+i D.1-i [答案] D [解析] 本題考查復(fù)數(shù)、共軛復(fù)數(shù)的運(yùn)算. 設(shè)z=a+bi,則=a-bi. 由題設(shè)條件可得a=1,b=-1.選D. 2.若f(x)=x2-2x-4lnx,則f′(x)>0的解集為(  ) A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞)

2、D.(-1,0) [答案] C [解析] 本題主要考查導(dǎo)數(shù)的概念及分式不等式的解法和對(duì)數(shù)的概念.因?yàn)閒(x)=x2-2x-4lnx, ∴f′(x)=2x-2-=>0, 即,解得x>2,故選C. 3.下列命題中正確的是(  ) A.復(fù)數(shù)a+bi與c+di相等的充要條件是a=c且b=d B.任何復(fù)數(shù)都不能比較大小 C.若=,則z1=z2 D.若|z1|=|z2|,則z1=z2或z1= [答案] C [解析] A選項(xiàng)未注明a,b,c,d∈R.實(shí)數(shù)是復(fù)數(shù),實(shí)數(shù)能比較大小.z1與z2的模相等,符合條件的z1,z2有無數(shù)多個(gè),如單位圓上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)的模都是1.故選C. 4.?dāng)?shù)列1

3、,,,,,,,,,,…,的前100項(xiàng)的和等于(  ) A.13 B.13 C.14 D.14 [答案] A [解析] 從數(shù)列排列規(guī)律看,項(xiàng)有n個(gè),故1+2+…+n=≤100.得n(n+1)≤200,所以n≤13,當(dāng)n=13時(shí),=13×7=91(個(gè)),故前91項(xiàng)的和為13,從第92項(xiàng)開始到第100項(xiàng)全是,共9個(gè),故前100項(xiàng)的和為13.故選A. 5.對(duì)一切實(shí)數(shù)x,不等式x2+a|x|+1≥0恒成立,則實(shí)數(shù)a的取值范圍是(  ) A.(-∞,-2] B.[-2,2] C.[-2,+∞) D.[0,+∞) [答案] C [解析] 用分離參數(shù)法可得a≥-(x≠0),則|x|+≥2,∴

4、a≥-2.當(dāng)x=0時(shí),顯然成立. 6.曲線y=ex在點(diǎn)(2,e2)處的切線與坐標(biāo)軸所圍三角形的面積為(  ) A. B.2e2 C.e2 D. [答案] D [解析] y′=(ex)′=ex,曲線在點(diǎn)(2,e2)處的切線斜率為e2,因此切線方程為y-e2=e2(x-2),則切線與坐標(biāo)軸交點(diǎn)為A(1,0),B(0,-e2), 所以:S△AOB=×1×e2=. 7.(xx·淄博市臨淄區(qū)檢測(cè))已知函數(shù)f(x)=x3-12x,若f(x)在區(qū)間(2m,m+1)上單調(diào)遞減,則實(shí)數(shù)m的取值范圍是(  ) A.-1≤m≤1 B.-1

5、 [解析] 因?yàn)閒 ′(x)=3x2-12=3(x+2)(x-2),令f ′(x)<0?-2

6、則f ′(x)=3ax2+2bx+c=3a(x-1)(x-3),∴b=-6a,c=9a, ∴f(x)=ax3-6ax2+9ax,∵f(1)=4,∴a=1. ∴f(x)=x3-6x2+9x,故選B. 9.若xy是正實(shí)數(shù),則2+2的最小值是(  ) A.3 B. C.4 D. [答案] C [解析] 因?yàn)閤y是正實(shí)數(shù),所以 2+2=x2+++y2++ =++≥1+2+1=4,當(dāng)且僅當(dāng)x=y(tǒng)=±時(shí),等號(hào)成立.故選C. 10.復(fù)數(shù)z滿足方程=4,那么復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)P組成的圖形為(  ) A.以(1,-1)為圓心,以4為半徑的圓 B.以(1,-1)為圓心,以2為半徑的圓

7、 C.以(-1,1)為圓心,以4為半徑的圓 D.以(-1,1)為圓心,以2為半徑的圓 [答案] C [解析] 原方程可化為|z+(1-i)|=4,即|z-(-1+i)|=4,表示以(-1,1)為圓心,以4為半徑的圓.故選C. 11.已知f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),那么b+c(  ) A.有最大值 B.有最大值- C.有最小值 D.有最小值- [答案] B [解析] 由題意f′(x)=3x2+2bx+c在[-1,2]上,f′(x)≤0恒成立. 所以, 即, 令b+c=z,b=-c+z, 如圖A是使得z最大的點(diǎn), 最大值為b+c=-

8、6-=-.故應(yīng)選B. 12.已知函數(shù)f(x)=x3-px2-qx的圖象與x軸相切于點(diǎn)(1,0),則f(x)的(  ) A.極大值為,極小值為0 B.極大值為0,極小值為- C.極小值為-,極大值為0 D.極小值為0,極大值為 [答案] A [解析] 由題設(shè)條件知, 所以 . 所以p=2,q=-1.所以f(x)=x3-2x2+x,進(jìn)而可求得f(1)是極小值,f是極大值.故選A. 二、填空題(本大題共4個(gè)小題,每小題4分,共16分,將正確答案填在題中橫線上) 13.(xx·四川理,11)復(fù)數(shù)=________. [答案]?。?i [解析] 本題考查了復(fù)數(shù)的運(yùn)算. ==-

9、2i. 14.(xx·陜西文,14)已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+, 則fxx(x)的表達(dá)式為________. [答案] fxx(x)= [解析] 本題考查了函數(shù)的解析式. f1(x)=f(x)=,f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…, fxx(x)=. 15.定積分0sintcostdt=________. [答案]  [解析]  0sintcostdt=sin2tdt =(-cos2t) =×(1+1)=. 16.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的

10、交點(diǎn)的橫坐標(biāo)為xn,令an=lgxn,則a1+a2+…+a99的值為________. [答案]?。? [解析] 本小題主要考查導(dǎo)數(shù)的幾何意義和對(duì)數(shù)函數(shù)的有關(guān)性質(zhì). ∵k=y(tǒng)′|x=1=n+1, ∴切線l:y-1=(n+1)(x-1), 令y=0,xn=,∴an=lg, ∴原式=lg+lg+…+lg =lg××…×=lg=-2. 三、解答題(本大題共6個(gè)小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(本題滿分12分)已知函數(shù)f(x)=.求證:對(duì)于任意不小于3的正整數(shù)n都有f(n)>成立. [解析] 要證f(n)>(n∈N*且n≥3),只需證>,即證1->1

11、-,也就是證明2n-1>2n. 下面用數(shù)學(xué)歸納法來證明2n-1>2n(n∈N*,且n≥3). ①當(dāng)n=3時(shí),左邊=7,右邊=6,左邊>右邊,不等式成立. ②假設(shè)當(dāng)n=k(k∈N*,且k≥3)時(shí)不等式成立,即2k-1>2k,則當(dāng)n=k+1時(shí),2k+1-1=2·2k-1=2(2k-1)+1>2·2k+1=2(k+1)+2k-1>2(k+1),故當(dāng)n=k+1時(shí),不等式也成立. 綜上所述,當(dāng)n∈N*且n≥3時(shí),2n-1>2n成立. 所以f(n)>(n∈N*且n≥3)成立. [說明] 對(duì)于2n-1>2n,還可以用二項(xiàng)式定理證明.由2n=C+C+C+…+C+C,有2n-C=C+C+(C+C+…

12、+C+C),即2n-1=2n+(C+C+…+C+C),當(dāng)n≥3時(shí),C+C+…+C+C>0.所以2n-1>2n. 18.(本題滿分12分)一艘漁艇停泊在距岸9km處,今需派人送信給距漁艇3km處的海岸漁站,如果送信人步行每小時(shí)5km,船速每小時(shí)4km,問應(yīng)在何處登岸再步行可以使抵達(dá)漁站的時(shí)間最??? [解析] 如圖,設(shè)BC為海岸線,A為漁艇停泊處,C為漁站,D為海岸上一點(diǎn), ∵AB=9,AC=3, BC==15, 設(shè)CD=x,由A到C所需時(shí)間為T, 則T=x+(0≤x≤15), T′=- . 令T′=0,解得x=3. x<3時(shí),T′<0,x>3時(shí),T′>0,因此在x=3處

13、取得極小值.又T(0)=,T(15)=,T(3)=,比較可知T(3)最?。? 答:在距漁站3km登岸可使抵達(dá)漁站的時(shí)間最?。? 19.(本題滿分12分)求同時(shí)滿足下列條件的所有復(fù)數(shù)z: (1)z+是實(shí)數(shù),且1

14、(2)知a=1,2,3. ∴相應(yīng)的b=±3,±(舍),±1. 因此,復(fù)數(shù)z為:1±3i或3±i. 20.(本題滿分12分)(xx·安徽理,18)設(shè)函數(shù)f(x)=1+(1+a)x-x2-x3,其中a>0. (1)討論f(x)在其定義域上的單調(diào)性; (2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值. [解析] (1)f(x)的定義域?yàn)?-∞,+∞),f ′(x)=1+a-2x-3x2, 令f ′(x)=0得x1=, x2=,x1x2時(shí),f ′(x)<0;當(dāng)x1

15、0,故f(x)在(-∞,x1)和(x2,+∞)內(nèi)單調(diào)遞減,在(x1,x2)內(nèi)單調(diào)遞增. (2)因?yàn)閍>0,所以x1<0,x2>0, ①當(dāng)a≥4時(shí),x2≥1,由(1)知,f(x)在[0,1]上單調(diào)遞增,所以f(x)在x=0和x=1處分別取得最小值和最大值. ②當(dāng)0

16、. 21.(本題滿分12分)已知數(shù)列{an}滿足a1=a,an+1=(n∈N*). (1)求a2,a3,a4; (2)猜測(cè)數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明. [解析] (1)由an+1=,可得a2==,a3===,a4===. (2)猜測(cè)an=(n∈N*). 下面用數(shù)學(xué)歸納法證明: ①當(dāng)n=1時(shí),左邊=a1=a, 右邊==a,猜測(cè)成立. ②假設(shè)當(dāng)n=k(k∈N*)時(shí)猜測(cè)成立, 即ak=. 則當(dāng)n=k+1時(shí),ak+1== = =. 故當(dāng)n=k+1時(shí),猜測(cè)也成立. 由①,②可知,對(duì)任意n∈N*都有 an=成立. 22.(本題滿分14分)設(shè)函數(shù)f(x)=x

17、3-3ax+b(a≠0). (1)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值; (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn). [分析] 考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值點(diǎn)的性質(zhì),以及分類討論思想. [解析] (1)f′(x)=3x2-3a. 因?yàn)榍€y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切, 所以即 解得a=4,b=24. (2)f′(x)=3(x2-a)(a≠0). 當(dāng)a<0時(shí),f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,此時(shí)函數(shù)f(x)沒有極值點(diǎn). 當(dāng)a>0時(shí),由f′(x)=0得x=±. 當(dāng)x∈(-∞,-)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增; 當(dāng)x∈(-,)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減; 當(dāng)x∈(,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增. 此時(shí)x=-是f(x)的極大值點(diǎn),x=是f(x)的極小值點(diǎn).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!