2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11節(jié) 導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)案 文(含解析)北師大版
-
資源ID:104741766
資源大?。?span id="yxhr3cy" class="font-tahoma">2.66MB
全文頁數(shù):9頁
- 資源格式: DOC
下載積分:18積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11節(jié) 導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)案 文(含解析)北師大版
第十一節(jié)導(dǎo)數(shù)與函數(shù)的單調(diào)性考綱傳真了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)不超過三次)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系函數(shù)yf(x)在某個區(qū)間內(nèi)可導(dǎo),則(1)若f (x)0,則f(x)在這個區(qū)間上是增加的;(2)若f (x)0,則f(x)在這個區(qū)間上是減少的;(3)若f (x)0,則f(x)在這個區(qū)間上是常數(shù)函數(shù)1在某區(qū)間內(nèi)f (x)>0(f (x)<0)是函數(shù)f(x)在此區(qū)間上為增(減)函數(shù)的充分不必要條件2可導(dǎo)函數(shù)f(x)在(a,b)上是增(減)函數(shù)的充要條件是:對任意x(a,b),都有f (x)0(f (x)0),且f (x)在(a,b)的任何子區(qū)間內(nèi)都不恒為零基礎(chǔ)自測1(思考辨析)判斷下列結(jié)論的正誤(正確的打“”,錯誤的打“×”)(1)若函數(shù)f(x)在區(qū)間(a,b)上遞增,那么在區(qū)間(a,b)上一定有f (x)>0()(2)如果函數(shù)在某個區(qū)間內(nèi)恒有f (x)0,則函數(shù)f(x)在此區(qū)間上沒有單調(diào)性()(3)f (x)0是f(x)為增函數(shù)的充要條件()(4)若函數(shù)f(x)在區(qū)間(a,b)上滿足f (x)0,則函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù)()答案(1)×(2)(3)×(4)×2f(x)x36x2的單調(diào)遞減區(qū)間為()A(0,4)B(0,2)C(4,)D(,0)Af (x)3x212x3x(x4),由f (x)<0,得0<x<4,遞減區(qū)間為(0,4)3(教材改編)如圖所示是函數(shù)f(x)的導(dǎo)函數(shù)f (x)的圖像,則下列判斷中正確的是()A函數(shù)f(x)在區(qū)間(3,0)上是減函數(shù)B函數(shù)f(x)在區(qū)間(1,3)上是減函數(shù)C函數(shù)f(x)在區(qū)間(0,2)上是減函數(shù)D函數(shù)f(x)在區(qū)間(3,4)上是增函數(shù)A當x(3,0)時,f (x)0,則f(x)在(3,0)上是減函數(shù)其他判斷均不正確4(教材改編)函數(shù)f(x)cos xx在(0,)上的單調(diào)性是()A先增后減B先減后增C增函數(shù)D減函數(shù)Df (x)sin x1,又x(0,),所以f (x)0,因此f(x)在(0,)上是減函數(shù),故選D.5已知f(x)x3ax在1,)上是增函數(shù),則a的取值范圍是_(,3f (x)3x2a,由題意知f (x)0,即a3x2對x1,)恒成立又當x1,)時,3x23,所以a3.不含參數(shù)的函數(shù)的單調(diào)性1函數(shù)yx2ln x的遞減區(qū)間為()A(1,1)B(0,1)C(1,)D(0,)B函數(shù)yx2ln x的定義域為(0,),yx,令y0,得0x1,所以遞減區(qū)間為(0,1),故選B2已知函數(shù)f(x)xln x,則f(x)()A在(0,)上遞增B在(0,)上遞減C在上遞增D在上遞減D因為函數(shù)f(x)xln x,定義域為(0,),所以f (x)ln x1(x0),當f (x)0時,解得x,即函數(shù)的遞增區(qū)間為;當f (x)0時,解得0x,即函數(shù)的遞減區(qū)間為,故選D.3已知定義在區(qū)間(,)上的函數(shù)f(x)xsin xcos x,則f(x)的遞增區(qū)間是_和f (x)sin xxcos xsin xxcos x,令f (x)xcos x0,則其在區(qū)間(,)上的解集為和,即f(x)的遞增區(qū)間為和.規(guī)律方法求函數(shù)單調(diào)區(qū)間的步驟(1)確定函數(shù)f(x)的定義域;(2)求f (x);(3)在定義域內(nèi)解不等式f (x)0,得遞增區(qū)間;(4)在定義域內(nèi)解不等式f (x)0,得遞減區(qū)間易錯警示:(1)求函數(shù)的單調(diào)區(qū)間時,一定要先確定函數(shù)的定義域,否則極易出錯(2)個別導(dǎo)數(shù)為0的點不影響所在區(qū)間的單調(diào)性,如函數(shù)f(x)x3,f (x)3x20(x0時,f (x)0),但f(x)x3在R上是增函數(shù)含參數(shù)的函數(shù)的單調(diào)性【例1】討論函數(shù)f(x)(a1)ln xax21的單調(diào)性解f(x)的定義域為(0,),f (x)2ax.當a1時,f (x)0,故f(x)在(0,)上遞增;當a0時,f (x)0,故f(x)在(0,)上遞減;當0a1時,令f (x)0,解得x,則當x時,f (x)0;當x時,f (x)0,故f(x)在上遞減,在上遞增規(guī)律方法解決含參數(shù)的函數(shù)單調(diào)性問題應(yīng)注意兩點(1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進行分類討論(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點 (1)已知函數(shù)f(x)x3x2ax1(aR),求函數(shù)f(x)的單調(diào)區(qū)間解f (x)x22xa開口向上,44a4(1a)當1a0,即a1時,f (x)0恒成立,f(x)在R上遞增當1a0,即a1時,令f (x)0,解得x11,x21,令f (x)0,解得x1或x1;令f (x)0,解得1x1,所以f(x)的遞增區(qū)間為(,1)和(1,);f(x)的遞減區(qū)間為(1,1)綜上所述:當a1時,f(x)在R上遞增;當a1時,f(x)的遞增區(qū)間為(,1)和(1,),f(x)的遞減區(qū)間為(1,1)(2)已知函數(shù)f(x)ex(ax22x2)(a0)求f(x)的區(qū)間解由題意得f (x)exax2(2a2)x(a0),令f (x)0,解得x10,x2.當0a1時,f(x)的遞增區(qū)間為(,0)和,遞減區(qū)間為;當a1時,f(x)在(,)內(nèi)遞增;當a1時,f(x)的遞增區(qū)間為和(0,),遞減區(qū)間為.函數(shù)單調(diào)性的應(yīng)用考法1比較大小【例2】(2019·莆田模擬)設(shè)函數(shù)f (x)是定義在(0,2)上的函數(shù)f(x)的導(dǎo)函數(shù),f(x)f(2x),當0x時,若f(x)sin xf (x)cos x0,af ,b0,cf ,則()AabcBbcaCcbaDcabA由f(x)f(2x),得函數(shù)f(x)的圖像關(guān)于直線x對稱,令g(x)f(x)cos x,則g(x)f (x)cos xf(x)·sin x0,所以當0x時,g(x)在(0,)內(nèi)遞增,所以gggg,即abc,故選A考法2根據(jù)函數(shù)的單調(diào)性求參數(shù)【例3】(1)(2017·江蘇高考)已知函數(shù)f(x)x32xex,其中e是自然對數(shù)的底數(shù)若f(a1)f(2a2)0,則實數(shù)a的取值范圍是_因為f(x)(x)32(x)exx32xexf(x),所以f(x)x32xex是奇函數(shù)因為f(a1)f(2a2)0,所以f(2a2)f(a1),即f(2a2)f(1a)因為f (x)3x22exex3x2223x20,所以f(x)在R上遞增,所以2a21a,即2a2a10,所以1a.(2)已知函數(shù)f(x)ln x,g(x)ax22x(a0)若函數(shù)h(x)f(x)g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;若函數(shù)h(x)f(x)g(x)在1,4上遞減,求a的取值范圍解h(x)ln xax22x,x(0,),所以h(x)ax2,由于h(x)在(0,)上存在遞減區(qū)間,所以當x(0,)時,ax20有解,即a有解設(shè)G(x),所以只要aG(x)min即可而G(x)1,所以G(x)min1,所以a1,即a的取值范圍為(1,)由h(x)在1,4上遞減得,當x1,4時,h(x)ax20恒成立,即a恒成立所以aG(x)max,而G(x)1,因為x1,4,所以,所以G(x)max(此時x4),所以a,即a的取值范圍是.規(guī)律方法根據(jù)函數(shù)單調(diào)性求參數(shù)的一般思路(1)利用集合間的包含關(guān)系處理:yf(x)在(a,b)上單調(diào),則區(qū)間(a,b)是相應(yīng)單調(diào)區(qū)間的子集(2)f(x)為增函數(shù)的充要條件是對任意的x(a,b)都有f (x)0且在(a,b)內(nèi)的任一非空子區(qū)間上,f (x)不恒為零,應(yīng)注意此時式子中的等號不能省略,否則漏解(3)函數(shù)在某個區(qū)間存在單調(diào)區(qū)間可轉(zhuǎn)化為不等式有解問題 (1)已知函數(shù)yf(x)對任意的x滿足f (x)cos xf(x)sin x0(其中f (x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是()Af f Bf f Cf(0)2f Df(0)f (2)已知a0,函數(shù)f(x)(x22ax)ex,若f(x)在1,1上是減函數(shù),則a的取值范圍是()ABCD(1)A(2)C(1)令g(x),則g(x)0,即g(x)在區(qū)間上是增函數(shù),則有g(shù)g,即,即2f f .即f f ,故選A(2)f (x)(2x2a)ex(x22ax)exx2(22a)x2aex,由題意知當x1,1時,f (x)0恒成立,即x2(22a)x2a0恒成立令g(x)x2(22a)x2a,則有即解得a,故選C1(2016·全國卷)若函數(shù)f(x)xsin 2xasin x在(,)上遞增,則a的取值范圍是()A1,1BCDC取a1,則f(x)xsin 2xsin x,f (x)1cos 2xcos x,但f (0)110,不具備在(,)遞增的條件,故排除A,B,D.故選C2(2018·全國卷節(jié)選)已知函數(shù)f(x)aexln x1.設(shè)x2是f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間解f(x)的定義域為(0,),f (x)aex.由題設(shè)知,f (2)0,所以a.從而f(x)exln x1,f (x)ex.當0<x<2時,f (x)<0;當x>2時,f (x)>0.所以f(x)在(0,2)上是減少的,在(2,)上是增加的3(2017·全國卷節(jié)選)已知函數(shù)f(x)ex(exa)a2x.討論f(x)的單調(diào)性解函數(shù)f(x)的定義域為(,),f (x)2e2xaexa2(2exa)(exa)若a0,則f(x)e2x在(,)上遞增若a0,則由f (x)0得xln a.當x(,ln a)時,f (x)0;當x(ln a,)時,f (x)0.故f(x)在(,ln a)上遞減,在(ln a,)上遞增若a<0,則由f (x)0得xln.當x時,f (x)0;當x時,f (x)0.故f(x)在上遞減,在上遞增綜上所述,若a0時,f(x)在(,)上遞增若a0時,f(x)在(,ln a)上遞減,在(ln a,)上遞增若a0時,f(x)在上遞減,在上遞增- 9 -