《高考數(shù)學(xué)二輪復(fù)習(xí) 專題九 選做大題 9.1 坐標(biāo)系與參數(shù)方程課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題九 選做大題 9.1 坐標(biāo)系與參數(shù)方程課件 文(30頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題九選做大題9.1坐標(biāo)系與參數(shù)方程 (選修44)-3-3-3-3-4-4-4-4-5-5-5-5-6-6-6-6-7-7-7-7-8-8-8-8-1.極坐標(biāo)系與極坐標(biāo)(1)極坐標(biāo)系:如圖所示,在平面內(nèi)取一個(gè)定點(diǎn)O,叫做極點(diǎn),自極點(diǎn)O引一條射線Ox,叫做極軸;再選定一個(gè)長(zhǎng)度單位,一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針方向),這樣就建立了一個(gè)極坐標(biāo)系.(2)極坐標(biāo):設(shè)M是平面內(nèi)一點(diǎn),極點(diǎn)O與點(diǎn)M的距離|OM|叫做點(diǎn)M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的角xOM叫做點(diǎn)M的極角,記為.有序數(shù)對(duì)(,)叫做點(diǎn)M的極坐標(biāo),記為M(,).一般地,不作特殊說(shuō)明時(shí),我們認(rèn)為0,可取任意實(shí)
2、數(shù).-9-9-9-9-2.極坐標(biāo)與直角坐標(biāo)的互化把直角坐標(biāo)系的原點(diǎn)作為極點(diǎn),x軸的非負(fù)半軸作為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,設(shè)M是平面內(nèi)任意一點(diǎn),它的直角坐標(biāo)是(x,y),極坐標(biāo)為(,),則它們之間的關(guān)系為x=cos,y=sin.另一種關(guān)系為2=x2+y2,tan= (x0).3.直線的極坐標(biāo)方程若直線過(guò)點(diǎn)M(0,0),且此直線與極軸所成的角為,則它的方程為sin(-)=0sin(0-).幾個(gè)特殊位置的直線的極坐標(biāo)方程:(1)直線過(guò)極點(diǎn):=0和=+0;(2)直線過(guò)點(diǎn)M(a,0),且垂直于極軸:cos=a;(3)直線過(guò),且平行于極軸:sin=b.-10-10-10-10-11-11-1
3、1-11-12-12-12-12-13-考向一考向二考向三考向四參數(shù)方程與極坐標(biāo)方程間的互化參數(shù)方程與極坐標(biāo)方程間的互化例1在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù),a0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:=4cos.(1)說(shuō)明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;(2)直線C3的極坐標(biāo)方程為=0,其中0滿足tan0=2,若曲線C1與C2的公共點(diǎn)都在C3上,求a.-14-考向一考向二考向三考向四解 (1)消去參數(shù)t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)為圓心,a為半徑的圓.將x=cos,y=sin代入C1的普通方程中,得
4、到C1的極坐標(biāo)方程為2-2sin+1-a2=0.(2)曲線C1,C2的公共點(diǎn)的極坐標(biāo)滿足方程組若0,由方程組得16cos2-8sincos+1-a2=0,由已知tan=2,可得16cos2-8sincos=0,從而1-a2=0,解得a=-1(舍去),a=1.a=1時(shí),極點(diǎn)也為C1,C2的公共點(diǎn),在C3上,所以a=1.-15-考向一考向二考向三考向四解題心得1.無(wú)論是參數(shù)方程化為極坐標(biāo)方程,還是極坐標(biāo)方程化為參數(shù)方程,都要先化為直角坐標(biāo)方程,再由直角坐標(biāo)方程化為需要的方程.2.求解與極坐標(biāo)方程有關(guān)的問題時(shí),可以轉(zhuǎn)化為熟悉的直角坐標(biāo)方程求解.若最終結(jié)果要求用極坐標(biāo)表示,則需將直角坐標(biāo)轉(zhuǎn)化為極坐標(biāo).
5、-16-考向一考向二考向三考向四對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練1在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為=2cos,.(1)求C的參數(shù)方程;(2)設(shè)點(diǎn)D在C上,C在D處的切線與直線l:垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo).-17-考向一考向二考向三考向四求兩點(diǎn)間距離的最值求兩點(diǎn)間距離的最值例2在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),t0),其中0.在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:=2sin,C3:= cos.(1)求C2與C3交點(diǎn)的直角坐標(biāo);(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|的最大值.-18-
6、考向一考向二考向三考向四-19-考向一考向二考向三考向四解題心得1.將參數(shù)方程化為普通方程的過(guò)程就是消去參數(shù)的過(guò)程,常用的消參方法有代入消參、加減消參和三角恒等式消參等,往往需要對(duì)參數(shù)方程進(jìn)行變形,為消去參數(shù)創(chuàng)造條件.2.若極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸正半軸重合,兩坐標(biāo)系的長(zhǎng)度單位相同,則極坐標(biāo)方程與直角坐標(biāo)方程可以互化.-20-考向一考向二考向三考向四(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo).-21-考向一考向二考向三考向四-22-考向一考向二考向三考向四求三角形面積的最值求三角形面積的最值例3
7、在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為cos=4.(1)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM|OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;(2)設(shè)點(diǎn)A的極坐標(biāo)為,點(diǎn)B在曲線C2上,求OAB面積的最大值.-23-考向一考向二考向三考向四-24-考向一考向二考向三考向四解題心得對(duì)于極坐標(biāo)和參數(shù)方程的問題,既可以通過(guò)極坐標(biāo)和參數(shù)方程來(lái)解決,也可以通過(guò)直角坐標(biāo)解決,但大多數(shù)情況下,把極坐標(biāo)問題轉(zhuǎn)化為直角坐標(biāo)問題,把參數(shù)方程轉(zhuǎn)化為普通方程更有利于在一個(gè)熟悉的環(huán)境下解決問題.這樣可以減少由于對(duì)極坐標(biāo)和參數(shù)方程理解不到位造成的錯(cuò)誤.-2
8、5-考向一考向二考向三考向四對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練3在直角坐標(biāo)系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2= 1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.(1)求C1,C2的極坐標(biāo)方程;(2)若直線C3的極坐標(biāo)方程為(R),設(shè)C2與C3的交點(diǎn)為M,N,求C2MN的面積.-26-考向一考向二考向三考向四求動(dòng)點(diǎn)軌跡的方程求動(dòng)點(diǎn)軌跡的方程例4已知?jiǎng)狱c(diǎn)P,Q都在曲線C:(t為參數(shù))上,對(duì)應(yīng)參數(shù)分別為t=與t=2(02),M為PQ的中點(diǎn).(1)求M的軌跡的參數(shù)方程;(2)將M到坐標(biāo)原點(diǎn)的距離d表示為的函數(shù),并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn).-27-考向一考向二考向三考向四解題心得在求動(dòng)點(diǎn)軌跡方程時(shí),如果題目有明確要求,求軌跡的參數(shù)方程或求軌跡的極坐標(biāo)方程或求軌跡的直角坐標(biāo)方程,那么就按要求做;如果沒有明確的要求,那么三種形式的方程寫出哪種都可,哪種形式的容易求就寫哪種.-28-考向一考向二考向三考向四(1)求的取值范圍;(2)求AB中點(diǎn)P的軌跡的參數(shù)方程.-29-考向一考向二考向三考向四-30-考向一考向二考向三考向四