2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案

上傳人:dream****gning 文檔編號:71484715 上傳時間:2022-04-07 格式:DOC 頁數(shù):10 大?。?31KB
收藏 版權(quán)申訴 舉報 下載
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案_第1頁
第1頁 / 共10頁
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案_第2頁
第2頁 / 共10頁
2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案_第3頁
第3頁 / 共10頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

18 積分

下載資源

資源描述:

《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題五 解析幾何 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì)教案(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第二講 橢圓、雙曲線、拋物線的定義、方程與性質(zhì) [考情分析] 圓錐曲線的定義、方程與性質(zhì)是每年必考熱點,多以選擇、填空考查,著重考查圓錐曲線的幾何性質(zhì)與標(biāo)準(zhǔn)方程求法,難度中檔偏下. 年份 卷別 考查角度及命題位置 2017 Ⅰ卷 雙曲線的性質(zhì)及應(yīng)用·T5 橢圓的綜合應(yīng)用·T12 Ⅱ卷 雙曲線離心率的范圍·T5 拋物線的方程及應(yīng)用·T12 Ⅲ卷 橢圓的離心率求法·T11 已知雙曲線的漸近線求參數(shù)·T14 2016 Ⅰ卷 橢圓的離心率求法·T5 Ⅲ卷 直線與橢圓的位置關(guān)系、橢圓的離心率求法·T12 2015 Ⅰ卷 橢圓與拋物線的簡單性質(zhì)·T5

2、 雙曲線的幾何性質(zhì)·T16 Ⅱ卷 雙曲線的標(biāo)準(zhǔn)方程·T15 [真題自檢] 1.(2017·高考全國卷Ⅰ)已知F是雙曲線C:x2-=1的右焦點,P是C上一點,且PF與x軸垂直,點A的坐標(biāo)是(1,3),則△APF的面積為(  ) A. B. C. D. 解析:法一:由題可知,雙曲線的右焦點為F(2,0),當(dāng)x=2時,代入雙曲線C的方程,得4-=1, 解得y=±3,不妨取點P(2,3),因為點A(1,3),所以AP∥x軸,又PF⊥x軸,所以AP⊥PF, 所以S△APF=·|PF|·|AP|=×3×1=.故選D. 法二:由題可知,雙曲線的右焦點為F(2,0),當(dāng)x=2時,代

3、入雙曲線C的方程,得4-=1,解得y=±3,不妨取點P(2,3),因為點A(1,3),所以=(1,0),=(0,-3),所以·=0,所以AP⊥PF, 所以S△APF=|PF||AP|=×3×1=.故選D. 答案:D 2.(2017·高考全國卷Ⅲ)已知橢圓C:+=1(a>b>0)的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為(  ) A. B. C. D. 解析:以線段A1A2為直徑的圓的圓心為坐標(biāo)原點O(0,0),半徑為a.由題意,圓心到直線bx-ay+2ab=0的距離為=a,即a2=3b2.又e2=1-=,所以e=,故

4、選A. 答案:A 3.(2016·高考全國卷Ⅱ)設(shè)F為拋物線C:y2=4x的焦點,曲線y=(k>0)與C交于點P,PE⊥x軸,則k=(  ) A. B.1 C. D.2 解析:∵y2=4x,∴F(1,0).又∵曲線y=(k>0)與C交于點P,PF⊥x軸,∴P(1,2). 將點P(1,2)的坐標(biāo)代入y=(k>0),得k=2.故選D. 答案:D 4.(2016·高考全國卷Ⅲ)已知O為坐標(biāo)原點,F(xiàn)是橢圓C:+=1(a>b>0)的左焦點,A,B分別為C的左、右頂點.P為C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為

5、(  ) A. B. C. D. 解析:如圖所示,由題意得A(-a,0),B(a,0),F(xiàn)(-c,0). 設(shè)E(0,m),由PF∥OE,得=, 則|MF|=.① 又由OE∥MF,得=,則|MF|=.② 由①②得a-c=(a+c),即a=3c,∴e==.故選A. 答案:A 橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程 [方法結(jié)論] 1.圓錐曲線的定義 (1)橢圓:|PF1|+|PF2|=2a(2a>|F1F2|); (2)雙曲線:=2a(2a<|F1F2|); (3)拋物線:|PF|=|PM|,點F不在直線l上,PM⊥l于M. 2.求解圓錐曲線標(biāo)準(zhǔn)方程“先定型,

6、后計算” 所謂“定型”,就是曲線焦點所在的坐標(biāo)軸的位置;所謂“計算”,就是指利用待定系數(shù)法求出方程中的a2,b2,p的值. [題組突破] 1.(2017·大連雙基)若拋物線y2=4x上一點P到其焦點F的距離為2,O為坐標(biāo)原點,則△OFP的面積為(  ) A. B.1 C. D.2 解析:設(shè)P(xP,yP),由題可得拋物線焦點為F(1,0),準(zhǔn)線方程為x=-1,又點P到焦點F的距離為2, ∴由定義知點P到準(zhǔn)線的距離為2,∴xP+1=2,∴xP=1,代入拋物線方程得|yP|=2, ∴△OFP的面積為S=·|OF|·|yP|=×1×2=1. 答案:B 2.(2017·湖北八校聯(lián)

7、考)設(shè)F1,F(xiàn)2為橢圓+=1的兩個焦點,點P在橢圓上,若線段PF1的中點在y軸上,則的值為(  ) A. B. C. D. 解析:由題意知a=3,b=.由橢圓定義知|PF1|+|PF2|=6.在△PF1F2中,因為PF1的中點在y軸上,O為F1F2的中點,由三角形中位線性質(zhì)可推得PF2⊥x軸,所以|PF2|==,所以|PF1|=6-|PF2|=, 所以=,故選B. 答案:B 3.已知雙曲線-=1(a>0),以原點為圓心,雙曲線的實半軸長為半徑的圓與雙曲線的兩條漸近線相交于A,B,C,D四點,四邊形ABCD的面積為4,則雙曲線的方程為(  ) A.-=1 B.-=1 C.-

8、=1 D.-=1 解析:根據(jù)對稱性,不妨設(shè)點A在第一象限,A(x,y),則,解得,∵四邊形ABCD的面積為4,∴4xy=4×=4,解得a=2,故雙曲線的方程為-=1,選D. 答案:D [誤區(qū)警示] 1.圓錐曲線的定義反映了它們的基本特征,理解定義是掌握其性質(zhì)的基礎(chǔ). 2.在使用橢圓與雙曲線的標(biāo)準(zhǔn)方程時,要注意區(qū)分焦點位置. 橢圓、雙曲線、拋物線的幾何性質(zhì) [方法結(jié)論] 1.橢圓、雙曲線中,a,b,c之間的關(guān)系 (1)在橢圓中:a2=b2+c2,離心率為e== ; (2)在雙曲線中:c2=a2+b2,離心率為e== . 2.雙曲線-=1(a>0,b>0)的漸近線方程為y=

9、±x.注意離心率e與漸近線的斜率的關(guān)系. 3.拋物線方程中p的幾何意義為焦點到準(zhǔn)線的距離. [題組突破] 1.(2017·河南八市聯(lián)考)已知點M(-3,2)是坐標(biāo)平面內(nèi)一定點,若拋物線y2=2x的焦點為F,點Q是該拋物線上的一動點,則|MQ|-|QF|的最小值是(  ) A. B.3 C. D.2 解析:拋物線的準(zhǔn)線方程為x=-,依據(jù)拋物線的定義,得|QM|-|QF|≥|xQ+3|-==,選C. 答案:C 2.(2017·合肥質(zhì)檢)若雙曲線C1:-=1與C2:-=1(a>0,b>0)的漸近線相同,且雙曲線C2的焦距為4,則b=(  ) A.2 B.4 C.6 D.8

10、 解析:由題意得,=2?b=2a,C2的焦距2c=4?c==2?b=4,故選B. 答案:B 3.(2017·廣東五校聯(lián)考)設(shè)橢圓E:+=1(a>b>0)的右頂點為A、右焦點為F,B為橢圓E上在第二象限內(nèi)的點,直線BO交E于點C.若直線BF平分線段AC,則E的離心率為________. 解析:設(shè)AC的中點為M,連接OM,AB,則OM為△ABC的中位線,B,F(xiàn),M在一條線上, 于是△OFM∽△AFB,且=,即=,解得e==. 答案: 4.(2017·高考全國卷Ⅲ)雙曲線-=1(a>0)的一條漸近線方程為y=x,則a=________. 解析:因為雙曲線-=1(a>0,b>0)的漸近線

11、方程為y=±x,所以a=5. 答案:5 [誤區(qū)警示] 1.注意易混橢圓與雙曲線中a2、b2、c2的關(guān)系. 2.已知雙曲線的一條漸近線y=mx(m≠0),則要注意判斷其焦點位置后,才能說明=|m|,還是=,從而再利用e= 求離心率. 3.對于形如y=ax2(a≠0),求焦點坐標(biāo)與準(zhǔn)線時注意先化為標(biāo)準(zhǔn)方程. 直線與橢圓、雙曲線、拋物線的位置關(guān)系 [方法結(jié)論] 弦長問題 設(shè)直線與圓錐曲線交于A(x1,y1),B(x2,y2)兩點,若直線AB的斜率存在(設(shè)為k),則|AB|=|x1-x2|或|AB|=|y1-y2|(k≠0),其中|x1-x2|=,|y1-y2|=;若直線AB的斜率不

12、存在,則直接求出直線與圓錐曲線的交點坐標(biāo),利用兩點間的距離公式求弦長. [典例](1)(2017·洛陽模擬)已知拋物線C:x2=4y的焦點為F,直線AB與拋物線C相交于A,B兩點,若2+-3=0,則弦AB中點到拋物線C的準(zhǔn)線的距離為________. 解析:法一:依題意得,拋物線的焦點F(0,1),準(zhǔn)線方程是y=-1,因為2(-)+(-)=0,即2+=0,所以F,A,B三點共線.設(shè)直線AB:y=kx+1(k≠0),A(x1,y1),B(x2,y2),則由,得x2=4(kx+1),即x2-4kx-4=0,x1x2=-4?、?;又2+=0,因此2x1+x2=0?、?由①②解得x=2,弦AB的中點

13、到拋物線C的準(zhǔn)線的距離為[(y1+1)+(y2+1)]=(y1+y2)+1=(x+x)+1=+1=. 法二:依題意得,拋物線的焦點F(0,1),準(zhǔn)線方程是y=-1,因為2(-)+(-)=0,即2+=0,所以F,A,B三點共線.不妨設(shè)直線AB的傾斜角為θ,0<θ<,|FA|=m,點A的縱坐標(biāo)為y1,則有|FB|=2m.分別由點A,B向拋物線的準(zhǔn)線作垂線,垂足分別為A1,B1,作AM⊥BB1于M,則有|AA1|=|AF|=m,|BB1|=|FB|=2m,|BM|=|BB1|-|AA1|=m,sin θ==,|AF|=y(tǒng)1+1=2-|AF|sin θ,|AF|=,同理|BF|=y(tǒng)2+1=,|AF|

14、+|BF|=+==,因此弦AB的中點到拋物線C的準(zhǔn)線的距離等于[(y1+1)+(y2+1)]=(y1+y2)+1=(|AF|+|BF|)=. 答案: (2)(2017·合肥質(zhì)檢)已知點F為橢圓E:+=1(a>b>0)的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線+=1與橢圓E有且僅有一個交點M. ①求橢圓E的方程; ②設(shè)直線+=1與y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2=|PA|·|PB|,求實數(shù)λ的取值范圍. 解析:①由題意,得a=2c,b=c,則橢圓E為+=1. 由,得x2-2x+4-3c2=0. ∵直線+=1與橢圓E有且僅有一個交

15、點M, ∴Δ=4-4(4-3c2)=0?c2=1, ∴橢圓E的方程為+=1. ②由①得M(1,), ∵直線+=1與y軸交于P(0,2), ∴|PM|2=, 當(dāng)直線l與x軸垂直時, |PA|·|PB|=(2+)×(2-)=1, ∴λ|PM|2=|PA|·|PB|?λ=, 當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2), 由?(3+4k2)x2+16kx+4=0, 依題意得:x1x2=,且Δ=48(4k2-1)>0, ∴|PA|·|PB|=(1+k2)x1x2=(1+k2)·=1+=λ, ∴λ=(1+), ∵k2>,∴<λ<

16、1. 綜上所述,λ的取值范圍是[,1). [類題通法] 直線與圓錐曲線的位置關(guān)系問題充分體現(xiàn)了方程思想,化歸思想及數(shù)形結(jié)合思想,著重考查運算及推理能力,其解決的方法一般是: (1)設(shè)直線方程,在直線的斜率不確定的情況下要分斜率存在和不存在進(jìn)行討論,或?qū)⒅本€方程設(shè)成x=my+b的形式; (2)聯(lián)立直線方程與曲線方程并將其轉(zhuǎn)化為一元二次方程,利用判別式或根與系數(shù)的關(guān)系得到交點橫坐標(biāo)或縱坐標(biāo)的關(guān)系; (3)涉及弦的問題,一般要用到弦長公式|AB|=·|x1-x2|或|AB|=|y1-y2|. [演練沖關(guān)] 已知拋物線x2=2py上點P處的切線方程為x-y-1=0. (1)求拋物線的

17、方程; (2)設(shè)A(x1,y1)和B(x2,y2)為拋物線上的兩個動點,其中y1≠y2且y1+y2=4,線段AB的垂直平分線l與y軸交于點C,求△ABC面積的最大值. 解析:(1)設(shè)點P(x0,),由x2=2py得y=,y′=,∵切線的斜率為1,∴=1且x0--1=0,解得p=2,∴拋物線的方程為x2=4y. (2)設(shè)線段AB的中點M(x3,y3),則x3=,y3=, kAB===×(x1+x2)=, ∴直線l的方程為y-2=-(x-x3), 即2x+x3(-4+y)=0,∴l(xiāng)過定點(0,4). ?x2-2xx3+2x-8=0, 得Δ=4x-4(2x-8)>0?-2<x3<2,

18、 |AB|=|x1-x2|==, C(0,4)到AB的距離d=|CM|=, ∴S△ABC=|AB|·d= = ≤ =8, 當(dāng)且僅當(dāng)x+4=16-2x,即x3=±2時取等號, ∴S△ABC的最大值為8. 圓錐曲線與其他知識的交匯 圓錐曲線與方程是解析幾何的核心部分,是高考重點考查的內(nèi)容,且所占分值較大,近年高考中,圓錐曲線與圓、平面向量、解三角形、不等式等知識交匯命題,成為命題的熱點和難點. [典例] (2017·武漢調(diào)研)已知雙曲線-=1(a>0,b>0)的兩條漸近線分別為l1,l2,經(jīng)過右焦點F垂直于l1的直線分別交l1,l2于A,B兩點.若|OA|,|AB|,|OB|

19、成等差數(shù)列,且與反向,則該雙曲線的離心率為(  ) A. B. C. D. 解析:設(shè)實軸長為2a,虛軸長為2b,令∠AOF=α,則由題意知tan α=,在△AOB中,∠AOB=180°-2α,tan∠AOB=-tan 2α=,∵|OA|,|AB|,|OB|成等差數(shù)列,∴設(shè)|OA|=m-d,|AB|=m,|OB|=m+d,∵OA⊥BF,∴(m-d)2+m2=(m+d)2,整理,得d=m,∴-tan 2α=-===,解得=2或=-(舍去),∴b=2a,c==a,∴e==. 答案:C [類題通法] 平面向量與圓錐曲線的交匯問題多考查平面向量的應(yīng)用,通過運算溝通數(shù)與形的轉(zhuǎn)化,從而使問題解決. [演練沖關(guān)] (2017·貴陽模擬)雙曲線-=1(a>0,b>0)的兩條漸近線將平面劃分為“上、下、左、右”四個區(qū)域(不含邊界),若點(2,1)在“右”區(qū)域內(nèi),則雙曲線離心率e的取值范圍是(  ) A.(1,) B.(,+∞) C.(1,) D.(,+∞) 解析:依題意,注意到題中的雙曲線-=1的漸近線方程為y=±x,且“右”區(qū)域是由不等式組所確定,又點(2,1)在“右”區(qū)域內(nèi),于是有1<,即>,因此題中的雙曲線的離心率 e=∈(,+∞),選B. 答案:B - 10 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!