2018年高考數學 專題04 導數及其應用教學案 文

上傳人:xins****2008 文檔編號:68742623 上傳時間:2022-04-04 格式:DOC 頁數:30 大小:774KB
收藏 版權申訴 舉報 下載
2018年高考數學 專題04 導數及其應用教學案 文_第1頁
第1頁 / 共30頁
2018年高考數學 專題04 導數及其應用教學案 文_第2頁
第2頁 / 共30頁
2018年高考數學 專題04 導數及其應用教學案 文_第3頁
第3頁 / 共30頁

本資源只提供3頁預覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

20 積分

下載資源

資源描述:

《2018年高考數學 專題04 導數及其應用教學案 文》由會員分享,可在線閱讀,更多相關《2018年高考數學 專題04 導數及其應用教學案 文(30頁珍藏版)》請在裝配圖網上搜索。

1、 專題04 導數及其應用 【2018年高考考綱解讀】 高考對本內容的考查主要有: (1)導數的幾何意義是考查熱點,要求是B級,理解導數的幾何意義是曲線上在某點處的切線的斜率,能夠解決與曲線的切線有關的問題; (2)導數的運算是導數應用的基礎,要求是B級,熟練掌握導數的四則運算法則、常用導數公式及復合函數的導數運算,一般不單獨設置試題,是解決導數應用的第一步; (3)利用導數研究函數的單調性與極值是導數的核心內容,要求是B級,對應用導數研究函數的單調性與極值要達到相等的高度. (4)導數在實際問題中的應用為函數應用題注入了新鮮的血液,使應用題涉及到的函數模型更加寬廣,要求是B級;

2、 (5)導數還經常作為高考的壓軸題,能力要求非常高,它不僅要求考生牢固掌握基礎知識、基本技能,還要求考生具有較強的分析能力和計算能力.估計以后對導數的考查力度不會減弱.作為導數綜合題,主要是涉及利用導數求最值解決恒成立問題,利用導數證明不等式等,常伴隨對參數的討論,這也是難點之所在. 【重點、難點剖析】 1.導數的幾何意義 (1)函數y=f(x)在x=x0處的導數f′(x0)就是曲線y=f(x)在點(x0,f(x0))處的切線的斜率,即k=f′(x0). (2)曲線y=f(x)在點(x0,f(x0))處的切線方程為y-f(x0)=f′(x0)(x-x0). 2.基本初等函數的導數公

3、式和運算法則 (1)基本初等函數的導數公式 原函數 導函數 f(x)=c f′(x)=0 f(x)=xn(n∈R) f′(x)=nxn-1 f(x)=sin x f′(x)=cos x f(x)=cos x f′(x)=-sin x f(x)=ax(a>0且a≠1) f′(x)=axln a f(x)=ex f′(x)=ex f(x)=logax (a>0且a≠1) f′(x)= f(x)=ln x f′(x)= (2)導數的四則運算 ①[u(x)±v(x)]′=u′(x)±v′(x); ②[u(x)v(x)]′=u′(x)v(x)+u(x)

4、v′(x); ③′=(v(x)≠0). 3.函數的單調性與導數 如果已知函數在某個區(qū)間上單調遞增(減),則這個函數的導數在這個區(qū)間上大(小)于零恒成立.在區(qū)間上離散點處導數等于零,不影響函數的單調性,如函數 y=x+sin x . 4.函數的導數與極值 對可導函數而言,某點導數等于零是函數在該點取得極值的必要條件.例如f(x)=x3,雖有f′(0)=0,但x=0不是極值點,因為f′(x)≥0恒成立,f(x)=x3在(-∞,+∞)上是單調遞增函數,無極值. 5.閉區(qū)間上函數的最值 在閉區(qū)間上連續(xù)的函數,一定有最大值和最小值,其最大值是區(qū)間的端點處的函數值和在這個區(qū)間內函數的所有極

5、大值中的最大者,最小值是區(qū)間端點處的函數值和在這個區(qū)間內函數的所有極小值中的最小值. 6.函數單調性的應用 (1)若可導函數f(x)在(a,b)上單調遞增,則f′(x)≥0在區(qū)間(a,b)上恒成立; (2)若可導函數f(x)在(a,b)上單調遞減,則f′(x)≤0在區(qū)間(a,b)上恒成立; (3)可導函數f(x)在區(qū)間(a,b)上為增函數是f′(x)>0的必要不充分條件. 【題型示例】 題型1、導數的幾何意義 【例1】 【2016高考新課標2文數】若直線是曲線的切線,也是曲線的切線,則 . 【答案】 相切于點,與曲線相切于點,則,由點在切線上得,由點在切線上得

6、,這兩條直線表示同一條直線,所以,解得. 【感悟提升】函數圖像上某點處的切線斜率就是函數在該點處的導數值.求曲線上的點到直線的距離的最值的基本方法是“平行切線法”,即作出與直線平行的曲線的切線,則這條切線到已知直線的距離即為曲線上的點到直線的距離的最值,結合圖形可以判斷是最大值還是最小值. 【舉一反三】(2015·陜西,15)設曲線y=ex在點(0,1)處的切線與曲線y=(x>0)上點P處的切線垂直,則P的坐標為________. 解析 ∵(ex)′=e0=1,設P(x0,y0),有=-=-1, 又∵x0>0,∴x0=1,故xP(1,1). 答案 (1,1) 【變式探究】 (1)曲

7、線y=xex-1在點(1,1)處切線的斜率等于(  ) A.2e    B.e    C.2    D.1 (2)在平面直角坐標系xOy中,若曲線y=ax2+(a,b為常數)過點P(2,-5),且該曲線在點P處的切線與直線7x+2y+3=0平行,則a+b的值是________. 【命題意圖】 (1)本題主要考查函數求導法則及導數的幾何意義. (2)本題主要考查導數的幾何意義,意在考查考生的運算求解能力. 【答案】(1)C (2)-3 又y′=2ax-, 所以在點P處的切線斜率4a-=-.② 由①②解得a=-1,b=-2,所以a+b=-3. 【感悟提升】 1.求曲線的切線

8、要注意“過點P的切線”與“在點P處的切線”的差異,過點P的切線中,點P不一定是切點,點P也不一定在已知曲線上,而在點P處的切線,必以點P為切點. 2.利用導數的幾何意義解題,主要是利用導數、切點坐標、切線斜率之間的關系來進行轉化.以平行、垂直直線斜率間的關系為載體求參數的值,則要求掌握平行、垂直與斜率之間的關系,進而和導數聯(lián)系起來求解. 題型2、利用導數研究函數的單調性 【例2】 (2017·高考全國卷Ⅱ)設函數f(x)=(1-x2)ex. (1)討論f(x)的單調性; (2)當x≥0時,f(x)≤ax+1,求a的取值范圍. 【變式探究】【2016高考山東文數】(本小題滿分13分)

9、 已知. (I)討論的單調性; (II)當時,證明對于任意的成立. 【答案】(Ⅰ)見解析;(Ⅱ)見解析 (1),, 當或時,,單調遞增; 當時,,單調遞減; (2)時,,在內,,單調遞增; (3)時,, 當或時,,單調遞增; 當時,,單調遞減. 綜上所述, 當時,函數在內單調遞增,在內單調遞減; 當時,在內單調遞增,在內單調遞減,在 內單調遞增; 當時,在內單調遞增; 當,在內單調遞增,在內單調遞減,在內單調遞增. 【感悟提升】確定函數的單調區(qū)間要特別注意函數的定義域,不要從導數的定義域確定函數的單調區(qū)間,在某些情況下函數導數的定義域與原函數的定義域不

10、同. 【舉一反三】(2015·福建,10)若定義在R上的函數f(x)滿足f(0)=-1,其導函數f′(x)滿足f′(x)>k>1,則下列結論中一定錯誤的是(  ) A.f< B.f> C.f< D.f> 解析 ∵導函數f′(x)滿足f′(x)>k>1,∴f′(x)-k>0,k-1>0,>0,可構造函數g(x)=f(x)-kx,可得g′(x)>0,故g(x)在R上為增函數,∵f(0)=-1, ∴g(0)=-1,∴g>g(0), ∴f->-1,∴f>,∴選項C錯誤,故選C. 答案 C 【變式探究】(2014·新課標全國卷Ⅱ)已知函數f(x)=ex-e-x-2x. (1)

11、討論f(x)的單調性; (2)設g(x)=f(2x)-4bf(x),當x>0時,g(x)>0,求b的最大值; (3)已知1.414 2<<1.414 3,估計ln 2的近似值(精確到0.001). 【命題意圖】本題主要考查導數的綜合應用,涉及利用導數求函數的單調區(qū)間、求函數的最值、估計無文數的近似值等,考查基本不等式的應用與分類討論思想的應用,意在考查考生的運算求解能力、推理論證能力與對知識的綜合應用能力. (3)由(2)知,g(ln )=-2b+2(2b-1)ln 2. 當b=2時,g(ln )=-4+6ln 2>0,ln 2>>0.692 8; 當b=+1時,ln(b-1+)

12、=ln , g(ln)=--2+(3 +2)ln 2 <0, ln 2<<0.693 4. 所以ln 2的近似值為0.693. 【感悟提升】 1.利用導數研究函數單調性的步驟 第一步:確定函數f(x)的定義域; 第二步:求f′(x); 第三步:解方程f′(x)=0在定義域內的所有實數根; 第四步:將函數f(x)的間斷點(即f(x)的無定義點)的橫坐標和各實數根按從小到大的順序排列起來,分成若干個小區(qū)間; 第五步:確定f′(x)在各小區(qū)間內的符號,由此確定每個區(qū)間的單調性. 2.根據函數的單調性求參數取值范圍的思路 (1)求f′(x). (2)將單調性轉化為導數f′(

13、x)在該區(qū)間上滿足的不等式恒成立問題求解. 【舉一反三】 (2015·新課標全國Ⅱ,21)設函數f(x)=emx+x2-mx. (1)證明:f(x)在(-∞,0)單調遞減,在(0,+∞)單調遞增; (2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|0≤e-1,求m的取值范圍. 【規(guī)律方法】討論函數的單調性其實就是討論不等式的解集的情況.大多數情況下,這類問題可以歸結為一個含有參數的一元二次不等式的解集的討論,在能夠通過因式分解求出不等式對應方程的根時依據根的大小進行分類討論,在不能通過因式分解求出根的情況時根據不等式對應方程的判別式進行分類討論.討論函數的單

14、調性是在函數的定義域內進行的,千萬不要忽視了定義域的限制. 題型3、利用導數研究函數的極值與最值 【例3】【2017山東,文20】(本小題滿分13分)已知函數., (I)當a=2時,求曲線在點處的切線方程; (II)設函數,討論的單調性并判斷有無極值,有極值時求出極值. 【答案】(I),(2)(II)⑴無極值;⑵極大值為,極小值為; ⑶極大值為,極小值為. 【解析】 (Ⅰ)由題意, 所以,當時, , , 所以, 因此,曲線在點處的切線方程是, 即. (1)當時, , 當時, , , 單調遞增; 當時, , , 單調遞減; 當時, , , 單調遞增. 所以當

15、時取到極大值,極大值是, 當時取到極小值,極小值是. (2)當時, , 當時, , 單調遞增; 所以在上單調遞增, 無極大值也無極小值. 【變式探究】【2016高考江蘇卷】(本小題滿分16分) 已知函數. 設. (1)求方程的根; (2)若對任意,不等式恒成立,求實數的最大值; (3)若,函數有且只有1個零點,求的值。 【答案】(1)①0 ②4(2)1 【解析】 (1)因為,所以. ①方程,即,亦即, 所以,于是,解得. ②由條件知. 因為對于恒成立,且, 所以對于恒成立. 而,且, 所以,故實數的最大值為4. 若,同理可得,在和之間存在的非0的零點,

16、矛盾. 因此,. 于是,故,所以. 【舉一反三】(2015·陜西,12)對二次函數f(x)=ax2+bx+c(a為非零整數),四位同學分別給出下列結論,其中有且只有一個結論是錯誤的,則錯誤的結論是(  ) A.-1是f(x)的零點 B.1是f(x)的極值點 C.3是f(x)的極值 D.點(2,8)在曲線y=f(x)上 答案 A 【變式探究】(2015·新課標全國Ⅱ,12)設函數f′(x)是奇函數f(x)( x∈R)的導函數,f(-1)=0,當x>0時,xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(  ) A.(-∞,-1)∪(0,1) B

17、.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 解析 因為f(x)(x∈R)為奇函數,f(-1)=0,所以f(1)=-f(-1)=0.當x≠0時,令g(x)=,則g(x)為偶函數,且g(1)=g(-1)=0.則當x>0時,g′(x)=′=<0,故g(x)在(0,+∞)上為減函數,在(-∞,0)上為增函數.所以在(0,+∞)上,當0<x<1時,g(x)>g(1)=0?>0?f(x)>0; 在(-∞,0)上,當x<-1時,g(x)<g(-1)=0?<0?f(x)>0.綜上,得使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1),選A.

18、 答案 A 【舉一反三】(2015·江蘇,19)已知函數f(x)=x3+ax2+b(a,b∈R). (1)試討論f(x)的單調性; (2)若b=c-a(實數c是與a無關的常數),當函數f(x)有三個不同的零點時,a的取值范圍恰好是(-∞,-3)∪∪,求c的值. 則在(-∞,-3)上g(a)<0,且在∪上g(a)>0均恒成立. 從而g(-3)=c-1≤0,且g=c-1≥0,因此c=1. 此時,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a], 因函數有三個零點,則x2+(a-1)x+1-a=0有兩個異于-1的不等實根,所以Δ=(a-1)2-4(1-a)=a

19、2+2a-3>0, 且(-1)2-(a-1)+1-a≠0, 解得a∈(-∞,-3)∪∪.綜上c=1. 題型四 導數的綜合應用 【例4】(2017·高考天津卷)設a,b∈R,|a|≤1.已知函數f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x). (1)求f(x)的單調區(qū)間. (2)已知函數y=g(x)和y=ex的圖象在公共點(x0,y0)處有相同的切線, ①求證:f(x)在x=x0處的導數等于0; ②若關于x的不等式g(x)≤ex在區(qū)間[x0-1,x0+1]上恒成立,求b的取值范圍. ②因為g(x)≤ex,x∈[x0-1,x0+1],且ex>0, 所以

20、f(x)≤1. 又因為f(x0)=1,f′(x0)=0, 所以x0為f(x)的極大值點,由(1)知x0=a. 另一方面,由于|a|≤1,故a+1<4-a. 由(1)知f(x)在(a-1,a)內單調遞增,在(a,a+1)內單調遞減,故當x0=a時,f(x)≤f(a)=1在[a-1,a+1]上恒成立, 從而g(x)≤ex在[x0-1,x0+1]上恒成立. 由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1. 令t(x)=2a3-6x2+1,x∈[-1,1],所以t′(x)=6x2-12x. 令t′(x)=0,解得x=2(舍去)或x=0. 因

21、為t(-1)=-7,t(1)=-3,t(0)=1, 所以,t(x)的值域為[-7,1]. 所以,b的取值范圍是[-7,1]. 【變式探究】某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當范圍內,決定對這種食品生產廠家提供政府補貼,設這種食品的市場價格為x元/千克,政府補貼為t元/千克,根據市場調查,當16≤x≤24時,這種食品市場日供應量p萬千克與市場日需求量q萬千克近似地滿足關系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當p=q時的市場價格稱為市場平衡價格. (1)將政府補貼表示為市場平衡價格的函數,并求出函數的值域. (

22、2)為使市場平衡價格不高于每千克20元,政府補貼至少為每千克多少元? 而x=20時,t=-×20+ln =1.5(元/千克), ∵t是x的減函數,欲使x≤20,必須t≥1.5(元/千克),要使市場平衡價格不高于每千克20元,政府補貼至少為1.5元/千克. 【舉一反三】時下,網校教學越來越受到廣大學生的喜愛,它已經成為學生們課外學習的一種趨勢,假設某網校的套題每日的銷售量y(單位:千套)與銷售價格x(單位:元/套)滿足關系式y(tǒng)=+4(x-6)2,其中2

23、合為每套題2元(只考慮銷售出的套數),試確定銷售價格x的值,使網校每日銷售套題所獲得的利潤最大.(保留一位小數) 【規(guī)律方法】在利用導數求實際問題中的最大值和最小值時,不僅要注意函數模型中的定義域,還要注意實際問題的意義,不符合的解要舍去. 【舉一反三】請你給某廠商設計一個包裝盒.如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于點P,正好形成一個正四棱柱形狀的包裝盒.E,F在AB上,且是被切去的一個等腰直角三角形斜邊的兩個端點.設AE=FB=x(cm). (1)若廠商要求包裝盒的側面積S(

24、cm2)最大,試問x應取何值? (2)若廠商要求包裝盒的體積V(cm3)最大,試問x應取何值.并求出此時包裝盒的高與底面邊長的比值. 題型五 利用導數解決不等式的有關問題 【例5】【2017北京,文20】已知函數. (Ⅰ)求曲線在點處的切線方程; (Ⅱ)求函數在區(qū)間上的最大值和最小值. 【答案】(Ⅰ);(Ⅱ)最大值1;最小值. 【解析】 (Ⅰ)因為,所以. 又因為,所以曲線在點處的切線方程為. (Ⅱ)設,則. 當時, , 所以在區(qū)間上單調遞減. 所以對任意有,即. 所以函數在區(qū)間上單調遞減. 因此在區(qū)間上的最大值為,最小值為. 【舉一反三】【2017江蘇,20】

25、 已知函數有極值,且導函數的極值點是的零點.(極值點是指函數取極值時對應的自變量的值) (1)求關于 的函數關系式,并寫出定義域; (2)證明:; (3)若,這兩個函數的所有極值之和不小于,求的取值范圍. 【答案】(1),定義域為.(2)見解析(3). 時, ,故在R上是增函數, 沒有極值; 時, 有兩個相異的實根, . 列表如下 x + 0 – 0 + 極大值 極小值 故的極值點是. 從而, 因此,定義域為. 記, 所有極值之和為, 因為的極值為,所以, . 因為,于是在上單調遞減.

26、 因為,于是,故. 因此a的取值范圍為. 【變式探究】(2016·高考全國Ⅱ卷)已知函數f(x)=(x+1)ln x-a(x-1). (1)當a=4時,求曲線y=f(x)在(1,f(1))處的切線方程; (2)若當x∈(1+∞)時,f(x)>0,求a的取值范圍. 【舉一反三】 (2015·湖南,21)已知a>0,函數f(x)=eaxsin x(x∈[0,+∞)).記xn為f(x)的從小到大的第n(n∈N*)個極值點,證明: (1)數列{f(xn)}是等比數列; (2)若a≥,則對一切n∈N*,xn<|f(xn)|恒成立. 于是當x=mπ-φ(m∈N*)時,f(x)取得極

27、值, 所以xn=nπ-φ(n∈N*). 此時,f(xn)=ea(nπ-φ)sin(nπ-φ)= (-1)n+1ea(nπ-φ)sin φ. 易知f(xn)≠0,而 ==-eaπ是常數,故數列{f(xn)}是首項為f(x1)=ea(π-φ)sin φ,公比為-eaπ的等比數列. (2)由(1)知,sin φ=,于是對一切n∈N*; xn<|f(xn)|恒成立,即nπ-φ<ea(nπ-φ)恒成立,等價于<(*) 恒成立,因為(a>0). 設g(t)=(t>0),則g′(t)=. 令g′(t)=0得t=1. 當0<t<1時,g′(t)<0,所以g(t)在區(qū)間(0,1)上單調遞減

28、; 當t>1時,g′(t)>0,所以g(t)在區(qū)間(1,+∞)上單調遞增. 從而當t=1時,函數g(t)取得最小值g(1)=e. 因此,要使(*)式恒成立,只需<g(1)=e, 即只需a>. 而當a=時,由tan φ==>且0<φ<知,<φ<. 于是π-φ<<,且當n≥2時,nπ-φ≥2π-φ>>. 因此對一切n∈N*,axn=≠1,所以g(axn)>g(1)=e=.故(*)式亦恒成立. 綜上所述,若a≥, 則對一切n∈N*,xn<|f(xn)|恒成立. 【變式探究】(2015·福建,20)已知函數f(x)=ln(1+x),g(x)=kx(k∈R). (1)證明:當x>0

29、時,f(x)<x; (2)證明:當k<1時,存在x0>0,使得對任意的x∈(0,x0),恒有f(x)>g(x); (3)確定k的所有可能取值,使得存在t>0,對任意的x∈(0,t),恒有|f(x)-g(x)|<x2. M(x)=kx-ln(1+x)-x2,x∈[0,+∞). 則有M′(x)=k--2x =. 故當x∈時,M′(x)>0, M (x)在上單調遞增, 故M(x)>M(0)=0,即|f(x)-g (x)|>x2,所以滿足題意的t不存在. 當k<1時,由(2)知,存在x0>0,使得當x∈(0,x0)時,f(x)>g(x), 此時|f(x)-g(x)|=f(

30、x)-g(x)= ln(1+x)-kx. 令N(x)=ln(1+x)-kx-x2,x∈[0,+∞). 則有N′(x)=-k-2x =. 當x∈時, N′(x)>0,N(x)在 上單調遞增, 故N(x)>N(0)=0,即f(x)-g(x)>x2. 記x0與中的較小者為x1, 則當x∈(0,x1)時,恒有|f(x)-g(x)|>x2. 故滿足題意的t不存在. 當k=1時,由(1)知,當x>0時,|f(x)-g(x)|=g(x)-f(x)=x-ln(1+x), 令H(x)=x-ln(1+x)-x2,x∈[0,+∞), 則有H′(x)=1--2x=. 當x>0時,H′(x

31、)<0, 所以H(x)在[0,+∞)上單調遞減, 故H(x)<H(0)=0. 故當x>0時,恒有|f(x)-g(x)|<x2. 此時,任意正實數t均滿足題意. 綜上,k=1. 法二 (1)(2)證明 同法一. 當x∈(0,x1)時,恒有|f(x)-g(x)|>x2. 故滿足題意的t不存在. 當k=1時,由(1)知,x>0,|f(x)-g(x)|=f(x)-g(x)=x-ln(1+x), 令M(x)=x-ln(1+x)-x2,x∈[0,+∞), 則有M′(x)=1--2x=. 當x>0時,M′(x)<0,所以M(x)在[0,+∞)上單調遞減, 故M(x)<M(0)=

32、0.故當x>0時, 恒有|f(x)-g(x)|<x2, 此時,任意正實數t均滿足題意. 綜上,k=1. 【舉一反三】(2014·福建)已知函數f(x)=ex-ax(a為常數)的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為-1. (1)求a的值及函數f(x)的極值; (2)證明:當x>0時,x2<ex; (3)證明:對任意給定的正數c,總存在x0,使得當x∈(x0,+∞)時,恒有x2<cex. 【命題意圖】本小題主要考查基本初等函數的導數、導數的運算及導數的應用、全稱量詞與存在量詞等基礎知識,考查考生的運算求解能力、抽象概括能力、推理論證能力,考查函數與方程思想、有限

33、與無限思想、化歸與轉化思想、分類與整合思想、特殊與一般思想. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上單調遞增,又g(0)=1>0, 因此,當x>0時,g(x)>g(0)>0,即x2<ex. (3)證明:①若c≥1,則ex≤cex.又由(2)知,當x>0時,x2<ex. 所以當x>0時,x2<cex. 取x0=0,當x∈(x0,+∞)時,恒有x2<cex. ②若0<c<1,令k=>1,要使不等式x2<cex成立,只要ex>kx2成立. 而要使ex>kx2成立,則只要x>ln(kx2), 只要x>2ln x+ln k成立. 令h(x)=x-2ln x-ln k,則h′(x)=1-=, 所以當x>2時,h′(x)>0,h(x)在(2,+∞)內單調遞增. 取x0=16k>16,所以h(x)在(x0,+∞)內單調遞增, 又h(x0)=16k-2ln(16k)-ln k=8(k-ln 2)+3(k-ln k)+5k, 易知k>ln k,k>ln 2,5k>0,所以h(x0)>0. 即存在x0=,當x∈(x0,+∞)時,恒有x2<cex. 綜上,對任意給定的正數c,總存在x0,當x∈(x0,+∞)時,恒有x2<cex. 30

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!