高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))

上傳人:努力****83 文檔編號(hào):66151065 上傳時(shí)間:2022-03-26 格式:DOC 頁(yè)數(shù):5 大?。?31.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))_第1頁(yè)
第1頁(yè) / 共5頁(yè)
高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))_第2頁(yè)
第2頁(yè) / 共5頁(yè)
高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))_第3頁(yè)
第3頁(yè) / 共5頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)必修2教案10_示范教案(2_3_3直線與平面垂直的性質(zhì))(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 2.3.3 直線與平面垂直的性質(zhì) 整體設(shè)計(jì) 教學(xué)分析 空間中直線與平面之間的位置關(guān)系中,垂直是一種非常重要的位置關(guān)系,它不僅應(yīng)用較多,而且是空間問(wèn)題平面化的典范.空間中直線與平面垂直的性質(zhì)定理不僅是由線面關(guān)系轉(zhuǎn)化為線線關(guān)系,而且將垂直關(guān)系轉(zhuǎn)化為平行關(guān)系,因此直線與平面垂直的性質(zhì)定理在立體幾何中有著特殊的地位和作用.本節(jié)重點(diǎn)是在鞏固線線垂直和面面垂直的基礎(chǔ)上,討論直線與平面垂直的性質(zhì)定理的應(yīng)用. 三維目標(biāo) 1.探究直線與平面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力、實(shí)事求是等嚴(yán)肅的科學(xué)態(tài)度和品質(zhì). 2.掌握直線與平面垂直的性質(zhì)定理的應(yīng)用提高邏輯推理的能力. 重點(diǎn)難點(diǎn)

2、直線與平面垂直的性質(zhì)定理及其應(yīng)用. 課時(shí)安排 1課時(shí) 教學(xué)過(guò)程 復(fù)習(xí) 直線與平面垂直的定義:一條直線和平面內(nèi)的任何一條直線都垂直,我們說(shuō)這條直線和這個(gè)平面互相垂直,直線叫做平面的垂線,平面叫做直線的垂面.直線和平面垂直的畫(huà)法及表示如下: 圖1 如圖1,表示方法為:a⊥α. 由直線與平面垂直的定義不難得出:b⊥a. 導(dǎo)入新課 思路1.(情境導(dǎo)入) 大家都讀過(guò)茅盾先生的《白楊禮贊》,在廣闊的西北平原上,矗立著一排排白楊樹(shù),它們像哨兵一樣守衛(wèi)著祖國(guó)疆土.一排排的白楊樹(shù),它們都垂直地面,那么它們之間的位置關(guān)系如何呢? 思路2.(事例導(dǎo)入) 如圖2,長(zhǎng)方體A

3、BCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直線都垂直所在的平面ABCD,它們之間具有什么位置關(guān)系? 圖2 推進(jìn)新課 新知探究 提出問(wèn)題 ①回憶空間兩直線平行的定義. ②判斷同垂直于一條直線的兩條直線的位置關(guān)系? ③找出恰當(dāng)空間模型探究同垂直于一個(gè)平面的兩條直線的位置關(guān)系. ④用三種語(yǔ)言描述直線與平面垂直的性質(zhì)定理. ⑤如何理解直線與平面垂直的性質(zhì)定理的地位與作用? 討論結(jié)果:①如果兩條直線沒(méi)有公共點(diǎn),我們說(shuō)這兩條直線平行.它的定義是以否定形式給出的,其證明方法多用反證法. ②如圖3,同垂直于一條直線的兩條直線的位置關(guān)系可能是:相交、平行、異面.

4、 圖3 ③如圖4,長(zhǎng)方體ABCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直線都垂直于所在的平面ABCD,它們之間具有什么位置關(guān)系? 圖4 圖5 棱AA′、BB′、CC′、DD′所在直線都垂直所在的平面ABCD,它們之間互相平行. ④直線和平面垂直的性質(zhì)定理用文字語(yǔ)言表示為: 垂直于同一個(gè)平面的兩條直線平行,也可簡(jiǎn)記為線面垂直、線線平行. 直線和平面垂直的性質(zhì)定理用符號(hào)語(yǔ)言表示為:b∥a. 直線和平面垂直的性質(zhì)定理用圖形語(yǔ)言表示為:如圖5. ⑤直線與平面垂直的性質(zhì)定理不僅揭示了線面之間的關(guān)系,而且揭示了平行與垂直

5、之間的內(nèi)在聯(lián)系. 應(yīng)用示例 思路1 例1 證明垂直于同一個(gè)平面的兩條直線平行. 解:已知a⊥α,b⊥α. 求證:a∥b. 圖6 證明:(反證法)如圖6,假定a與b不平行,且b∩α=O,作直線b′,使O∈b′,a∥b′. 直線b′與直線b確定平面β,設(shè)α∩β=c,則O∈c. ∵a⊥α,b⊥α,∴a⊥c,b⊥c. ∵b′∥a,∴b′⊥c.又∵O∈b,O∈b′,bβ,b′β, a∥b′顯然不可能,因此b∥a. 例2 如圖7,已知α∩β=l,EA⊥α于點(diǎn)A,EB⊥β于點(diǎn)B,aα,a⊥AB. 求證:a∥l. 圖7 證明:l⊥平面EAB. 又∵aα,EA⊥α,∴

6、a⊥EA. 又∵a⊥AB,∴a⊥平面EAB. ∴a∥l. 思路2 例1 如圖8,已知直線a⊥b,b⊥α,aα. 求證:a∥α. 圖8 證明:在直線a上取一點(diǎn)A,過(guò)A作b′∥b,則b′必與α相交,設(shè)交點(diǎn)為B,過(guò)相交直線a、b′作平面β,設(shè)α∩β=a′, ∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b, ∴b′⊥α. 又∵a′α,∴b′⊥a′. 由a,b′,a′都在平面β內(nèi),且b′⊥a,b′⊥a′知a∥a′.∴a∥α. 例2 如圖9,已知PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點(diǎn). (1)求證:MN⊥CD; (2)若∠PDA=45°,求證:MN

7、⊥面PCD. 圖9 證明:(1)取PD中點(diǎn)E,又N為PC中點(diǎn),連接NE,則NE∥CD,NE=CD. 又∵AM∥CD,AM=CD, ∴AMNE. ∴四邊形AMNE為平行四邊形. ∴MN∥AE. ∵CD⊥AE. (2)當(dāng)∠PDA=45°時(shí),Rt△PAD為等腰直角三角形, 則AE⊥PD.又MN∥AE, ∴MN⊥PD,PD∩CD=D. ∴MN⊥平面PCD. 變式訓(xùn)練 已知a、b、c是平面α內(nèi)相交于一點(diǎn)O的三條直線,而直線l和平面α相交,并且和a、b、c三條直線成等角.求證:l⊥α. 證明:分別在a、b、c上取點(diǎn)A、B、C并使AO=BO=CO.設(shè)l經(jīng)過(guò)O,在l上取

8、一點(diǎn)P,在△POA、△POB、△POC中, ∵PO=PO=PO,AO=BO=CO,∠POA=∠POB=∠POC, ∴△POA≌△POB≌△POC. ∴PA=PB=PC.取AB的中點(diǎn)D, 連接OD、PD,則OD⊥AB,PD⊥AB. ∵PD∩OD=D,∴AB⊥平面POD. ∵PO平面POD,∴PO⊥AB. 同理,可證PO⊥BC. ∵ABα,BCα,AB∩BC=B,∴PO⊥α,即l⊥α. 若l不經(jīng)過(guò)點(diǎn)O時(shí),可經(jīng)過(guò)點(diǎn)O作l′∥l.用上述方法證明l′⊥α, ∴l(xiāng)⊥α. 知能訓(xùn)練 如圖10,已知正方體ABCD—A1B1C1D1的棱長(zhǎng)為a, (1)求證:BD1⊥平面B1AC; (

9、2)求B到平面B1AC的距離. 圖10 (1)證明:∵AB⊥B1C,BC1⊥B1C,∴B1C⊥面ABC1D1. 又BD1面ABC1D1,∴B1C⊥BD1. ∵B1B⊥AC,BD⊥AC, ∴AC⊥面BB1D1D.又BD1面BB1D1D,∴AC⊥BD1. ∴BD1⊥平面B1AC. (2)解:∵O∈BD,∴連接OB1交BD1于E. 又O∈AC,∴OB1面B1AC. ∴BE⊥OE,且BE即為所求距離. ∵,∴BE=·OB=. 拓展提升 已知在梯形ABCD中,AB∥CD,CD在平面α內(nèi),AB∶CD=4∶6,AB到α的距離為10 cm,求梯形對(duì)角線的交點(diǎn)O到α的距離.

10、 圖11 解:如圖所示,過(guò)B作BE⊥α交α于點(diǎn)E,連接DE, 過(guò)O作OF⊥DE交DE于點(diǎn)F, ∵AB∥CD,ABα,CDα,∴AB∥α.又BE⊥α, ∴BE即為AB到α的距離,BE=10 cm且∠BED=90°. ∵OF⊥DE,∴OF∥BE,得. ∵AB∥CD,∴△AOB∽△COD. ∴,得. 又,BE=10 cm, ∴OF=×10=6(cm). ∵OF∥BE,BE⊥α. ∴OF⊥α,即OF即為所求距離為6 cm. 課堂小結(jié) 知識(shí)總結(jié):利用線面垂直的性質(zhì)定理將線面垂直問(wèn)題轉(zhuǎn)化為線線平行,然后解決證明垂直問(wèn)題、平行問(wèn)題、求角問(wèn)題、求距離問(wèn)題等. 思想方法總結(jié):轉(zhuǎn)化思想,即把面面關(guān)系轉(zhuǎn)化為線面關(guān)系,把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題. 作業(yè) 課本習(xí)題2.3 B 組1、2. 設(shè)計(jì)感想 線面關(guān)系是線線關(guān)系和面面關(guān)系的橋梁和紐帶,空間中直線與平面垂直的性質(zhì)定理不僅是由線面關(guān)系轉(zhuǎn)化為線線關(guān)系,而且將垂直關(guān)系轉(zhuǎn)化為平行關(guān)系,因此直線與平面垂直的性質(zhì)定理在立體幾何中有著特殊的地位和作用,因此它是高考考查的重點(diǎn).本節(jié)不僅選用了大量經(jīng)典好題,還選用了大量的2007高考模擬題,相信能夠幫助大家解決立體幾何中的重點(diǎn)難點(diǎn)問(wèn)題.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!