浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版

上傳人:沈*** 文檔編號(hào):52203298 上傳時(shí)間:2022-02-07 格式:PPT 頁數(shù):57 大?。?.23MB
收藏 版權(quán)申訴 舉報(bào) 下載
浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版_第1頁
第1頁 / 共57頁
浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版_第2頁
第2頁 / 共57頁
浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版_第3頁
第3頁 / 共57頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省高三數(shù)學(xué)專題復(fù)習(xí)攻略 第一部分專題四第三講 空間向量與立體幾何課件 理 新人教版(57頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第三講空間向量與立體幾何第三講空間向量與立體幾何主干知識(shí)整合主干知識(shí)整合2幾何法求空間角與距離的步驟幾何法求空間角與距離的步驟一作、二證、三計(jì)算一作、二證、三計(jì)算高考熱點(diǎn)講練高考熱點(diǎn)講練向量法證明垂直與平行向量法證明垂直與平行例例1 如圖,在六面體如圖,在六面體ABCDA1B1C1D1中,四邊形中,四邊形ABCD是邊長是邊長為為2的正方形,四邊形的正方形,四邊形A1B1C1D1是邊長為是邊長為1的正方形,的正方形,DD1平平面面A1B1C1D1,DD1平面平面ABCD,DD12.求證:求證:(1)A1C1與與AC共面,共面,B1D1與與BD共面;共面;(2)平面平面A1ACC1平面平面B1BD

2、D1.【證明】【證明】(1)以以D為原點(diǎn),以為原點(diǎn),以DA,DC,DD1所在所在直線分別為直線分別為x軸,軸,y軸,軸,z軸,建立空間直角坐標(biāo)系軸,建立空間直角坐標(biāo)系Dxyz.如圖,則有如圖,則有D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2),【歸納拓展歸納拓展】用向量法證明平行、垂直問題用向量法證明平行、垂直問題的步驟:的步驟:(1)建立空間圖形與空間向量的關(guān)系建立空間圖形與空間向量的關(guān)系(可以建立空可以建立空間直角坐標(biāo)系,也可以不建系間直角坐標(biāo)系,也可以不建系),用空間向量表,用空間向量

3、表示問題中涉及的點(diǎn)、直線、平面;示問題中涉及的點(diǎn)、直線、平面;(2)通過向量運(yùn)算研究平行、垂直問題;通過向量運(yùn)算研究平行、垂直問題;(3)根據(jù)運(yùn)算結(jié)果解釋相關(guān)問題根據(jù)運(yùn)算結(jié)果解釋相關(guān)問題變式訓(xùn)練變式訓(xùn)練1在正方體在正方體ABCDA1B1C1D1中,中,E,F(xiàn)分別是分別是BB1,DC的中點(diǎn)的中點(diǎn)(1)求證:求證:D1F平面平面ADE;(2)設(shè)正方形設(shè)正方形ADD1A1的中心為的中心為M,B1C1的中點(diǎn)為的中點(diǎn)為N,求證:求證:MN平面平面ADE.向量法求線線角和線面角向量法求線線角和線面角例例2 (2011年高考四川卷年高考四川卷)如圖,在直三棱柱如圖,在直三棱柱ABCA1B1C1中,中,BAC

4、90,ABACAA11,延長,延長A1C1至點(diǎn)至點(diǎn)P,使,使C1PA1C1,連接,連接AP交棱交棱CC1于點(diǎn)于點(diǎn)D.(1)求證:求證:PB1平面平面BDA1;(2)求二面角求二面角AA1DB的平面角的余弦值的平面角的余弦值 (2011年高考北京卷年高考北京卷)如如圖,在四棱錐圖,在四棱錐PABCD中,中,PA平面平面ABCD,底面,底面ABCD是是菱形,菱形,AB2,BAD60.(1)求證:求證:BD平面平面PAC;(2)若若PAAB,求,求PB與與AC所成角的余弦值;所成角的余弦值;(3)當(dāng)平面當(dāng)平面PBC與平面與平面PDC垂直時(shí),求垂直時(shí),求PA的長的長例例3【解解】(1)證明:因?yàn)樗倪呅?/p>

5、證明:因?yàn)樗倪呅蜛BCD是菱形,是菱形,所以所以ACBD.又因?yàn)橛忠驗(yàn)镻A平面平面ABCD,所以,所以PABD.所以所以BD平面平面PAC.(2)設(shè)設(shè)ACBDO,【歸納拓展歸納拓展】(1)運(yùn)用空間向量坐標(biāo)運(yùn)算求空運(yùn)用空間向量坐標(biāo)運(yùn)算求空間角的一般步驟為:間角的一般步驟為:建立恰當(dāng)?shù)目臻g直角坐標(biāo)系求出相關(guān)點(diǎn)建立恰當(dāng)?shù)目臻g直角坐標(biāo)系求出相關(guān)點(diǎn)的坐標(biāo)寫出向量坐標(biāo)結(jié)合公式進(jìn)行論的坐標(biāo)寫出向量坐標(biāo)結(jié)合公式進(jìn)行論證、計(jì)算轉(zhuǎn)化為幾何結(jié)論證、計(jì)算轉(zhuǎn)化為幾何結(jié)論(2)幾個(gè)常見空間角的求法:幾個(gè)常見空間角的求法:異面直線所成的角異面直線所成的角可通過直線的方向向量夾可通過直線的方向向量夾角角求得,即求得,即cos

6、|cos|.直線與平面所成的角直線與平面所成的角主要通過直線的方向向主要通過直線的方向向量與平面的法向量的夾角量與平面的法向量的夾角求得,即求得,即sin|cos|.二面角的大小可以利用分別在兩個(gè)半平面內(nèi)二面角的大小可以利用分別在兩個(gè)半平面內(nèi)與棱垂直的直線的方向向量的夾角與棱垂直的直線的方向向量的夾角(或其補(bǔ)角或其補(bǔ)角)求求得;也可以通過二面角的兩個(gè)半平面的法向量得;也可以通過二面角的兩個(gè)半平面的法向量的夾角來求,它等于兩個(gè)法向量的夾角或其補(bǔ)的夾角來求,它等于兩個(gè)法向量的夾角或其補(bǔ)角角變式訓(xùn)練變式訓(xùn)練2如圖所示,在棱如圖所示,在棱長為長為a的正方體的正方體ABCD A1B1C1D1中,中,E是

7、是BC的中點(diǎn),平的中點(diǎn),平面面B1EDF交交A1D1于點(diǎn)于點(diǎn)F.(1)指出指出F在在A1D1上的位置,并說明理由;上的位置,并說明理由;(2)求直線求直線A1C與與DE所成角的余弦值;所成角的余弦值;(3)求直線求直線AD與平面與平面B1EDF所成角的正弦值所成角的正弦值向量法解決探索性問題向量法解決探索性問題例例4(1)當(dāng)點(diǎn)當(dāng)點(diǎn)E為為BC的中點(diǎn)時(shí),試判斷的中點(diǎn)時(shí),試判斷EF與平面與平面PAC的位的位置關(guān)系,并說明理由;置關(guān)系,并說明理由;(2)證明:無論點(diǎn)證明:無論點(diǎn)E在在BC邊的何處,都有邊的何處,都有PEAF;(3)當(dāng)當(dāng)BE等于何值時(shí),等于何值時(shí),PA與平面與平面PDE所成角的大小所成角

8、的大小為為45?【解解】(1)當(dāng)點(diǎn)當(dāng)點(diǎn)E為為BC的中點(diǎn)時(shí),的中點(diǎn)時(shí),EF與平面與平面PAC平平行行在在PBC中,中,E、F分別為分別為BC、PB的中點(diǎn),的中點(diǎn),EFPC.【歸納拓展歸納拓展】空間向量最適合于解決這類立空間向量最適合于解決這類立體幾何中的探索性問題,它無需進(jìn)行復(fù)雜的作體幾何中的探索性問題,它無需進(jìn)行復(fù)雜的作圖、論證、推理,只需通過坐標(biāo)運(yùn)算進(jìn)行判圖、論證、推理,只需通過坐標(biāo)運(yùn)算進(jìn)行判斷解題時(shí),把要成立的結(jié)論當(dāng)作條件,據(jù)此斷解題時(shí),把要成立的結(jié)論當(dāng)作條件,據(jù)此列方程或方程組,把列方程或方程組,把“是否存在是否存在”問題轉(zhuǎn)化為問題轉(zhuǎn)化為“點(diǎn)點(diǎn)的坐標(biāo)是否有解,是否有規(guī)定范圍的解的坐標(biāo)是否

9、有解,是否有規(guī)定范圍的解”等,所等,所以使問題的解決更簡單、有效,應(yīng)善于運(yùn)用這以使問題的解決更簡單、有效,應(yīng)善于運(yùn)用這一方法解題一方法解題變式訓(xùn)練變式訓(xùn)練3已知在四棱柱已知在四棱柱ABCDA1B1C1D1中,側(cè)中,側(cè)棱棱AA1底面底面ABCD,ABAD,BCAD,且,且AB2,AD4,BC1,側(cè)棱,側(cè)棱AA14.(1)若若E為為AA1上一點(diǎn),試確定上一點(diǎn),試確定E點(diǎn)的位置,使點(diǎn)的位置,使EB平面平面A1CD;(2)在在(1)的條件下,求二面角的條件下,求二面角EBDA的余弦值的余弦值考題解答技法考題解答技法例例 (2011年高考山東卷年高考山東卷)(本小題滿分本小題滿分12分分)在如在如圖所示

10、的幾何體中,四邊形圖所示的幾何體中,四邊形ABCD為平行四邊形,為平行四邊形,ACB90,EA平面平面ABCD,EFAB,F(xiàn)GBC,EGAC,AB2EF.(1)若若M是線段是線段AD的中點(diǎn),求證:的中點(diǎn),求證:GM平面平面ABFE;(2)若若ACBC2AE,求二面角,求二面角ABFC的大的大小小【解解】(1)證明:因?yàn)樽C明:因?yàn)镋FAB,F(xiàn)GBC,EGAC,ACB90.所以所以EGF90,ABCEFG.由于由于AB2EF,2分分因此因此BC2FG.連接連接AF,【得分技巧得分技巧】第第(1)問中的得分點(diǎn)是先證明問中的得分點(diǎn)是先證明BC2FG,再進(jìn)一步推導(dǎo),再進(jìn)一步推導(dǎo)AM與與GF的平行與相等關(guān)的平行與相等關(guān)系;第系;第(2)問的得分點(diǎn):一是建立空間坐標(biāo)系,問的得分點(diǎn):一是建立空間坐標(biāo)系,寫出一些點(diǎn)的坐標(biāo),二是求平面寫出一些點(diǎn)的坐標(biāo),二是求平面BFC和平面和平面ABF的法向量的法向量【失分溯源失分溯源】解答本題的失分點(diǎn)有:解答本題的失分點(diǎn)有:(1)步驟步驟不規(guī)范,如不規(guī)范,如FA面面ABFE,GM 平面平面ABFE,這,這兩個(gè)條件易漏;兩個(gè)條件易漏;(2)計(jì)算出錯(cuò),求解法向量出錯(cuò),計(jì)算出錯(cuò),求解法向量出錯(cuò),造成失分造成失分本部分內(nèi)容講解結(jié)束本部分內(nèi)容講解結(jié)束按按ESC鍵退出全屏播放鍵退出全屏播放

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!