高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版

上傳人:無*** 文檔編號:52195881 上傳時間:2022-02-07 格式:PPT 頁數(shù):54 大?。?.38MB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版_第1頁
第1頁 / 共54頁
高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版_第2頁
第2頁 / 共54頁
高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版_第3頁
第3頁 / 共54頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學大一輪總復習 第3篇 第6節(jié) 正弦定理和余弦定理及其應用課件 文 新人教A版(54頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第第6節(jié)節(jié) 正弦定理和余弦定理及其應用正弦定理和余弦定理及其應用基 礎 梳 理 1正、余弦定理定理正弦定理余弦定理內(nèi)容(其中R是ABC外接圓半徑)a2_;b2 _ ;c2 _b2c22bccos A c2a22cacos B a2b22abcos C 2Rsin B 2Rsin C sin B 定理正弦定理余弦定理解決的問題(1)已知兩角和任一邊,求另一角和其他兩條邊;(2)已知兩邊和其中一邊的對角,求另一邊和其他兩角(1)已知三邊,求各角;(2)已知兩邊和它們的夾角,求第三邊和其他兩個角;(3)已知兩邊和其中一邊的對角,求其他角和邊質(zhì)疑探究1:在三角形ABC中,“AB”是“sin Asin

2、B”的什么條件?“AB”是“cos AB”是“sin Asin B”的充要條件,“AB”是“cos Acos B”的充要條件質(zhì)疑探究2:在三角形中,“a2b2c2”是“ABC為銳角三角形”的什么條件?提示:“a2b2c2”是“ABC為銳角三角形”的必要不充分條件3解三角形在測量中的常見題型(1)利用正弦定理和余弦定理解三角形的常見題型有:測量距離問題、測量高度問題、測量角度問題、計算面積問題、航海問題、物理問題等(2)有關(guān)測量中的幾個術(shù)語仰角和俯角:與目標視線同在一鉛垂平面內(nèi)的水平視線和目標視線的夾角,目標視線在水平視線上方時叫_,目標視線在水平視線下方時叫_(如圖(1)所示)仰角俯角答案:B

3、 2(2013年高考陜西卷)設ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcos Cccos Basin A,則ABC的形狀為()A銳角三角形B直角三角形C鈍角三角形D不確定答案:B3(2014廣東肇慶高三一模)在ABC中,AC,BC2,B60,則ABC的面積等于_答案:32考 點 突 破 利用正、余弦定理解三角形 思維導引(1)在RtBPC中求出PBC,從而求出PBA.然后在PBA中利用余弦定理求解即可(2)設PBA,表示出PAB,PCB,PBC中表示出PB,然后在PAB中由正弦定理求解即可利用正、余弦定理解三角形關(guān)鍵是根據(jù)已知條件及所求結(jié)論確定三角形及所需應用的定理,有時需結(jié)合圖形

4、分析求解,有時需根據(jù)三角函數(shù)值的有界性、三角形中大邊對大角定理等確定解的個數(shù)例2(2013年高考新課標全國卷)ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知abcos CcsinB.(1)求B;(2)若b2,求ABC面積的最大值思維導引(1)利用正弦定理將已知等式轉(zhuǎn)化為關(guān)于角的關(guān)系式,結(jié)合三角形內(nèi)角和定理及兩角和的正弦公式化簡求B.(2)結(jié)合余弦定理、基本不等式及三角形面積公式求解與三角形面積有關(guān)的問題利用正、余弦定理判定三角形形狀 依據(jù)已知條件中的邊角關(guān)系判斷時,主要有如下兩條途徑:(1)利用正、余弦定理把已知條件轉(zhuǎn)化為邊邊關(guān)系,通過因式分解、配方等得出邊的相應關(guān)系,從而判斷三角形的形狀

5、(2)利用正、余弦定理把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角恒等變形,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀此時要注意應用ABC這個結(jié)論在兩種解法的等式變形中,一般兩邊不要約去公因式,應移項提取公因式,以免漏解即時突破3 (2012年高考上海卷)在ABC中,若sin2Asin2Bsin2C,則ABC的形狀是()A銳角三角形B直角三角形C鈍角三角形D不能確定用正、余弦定理解決實際問題 利用正、余弦定理解決實際問題的一般步驟:(1)分析理解題意,分清已知與未知,畫出示意圖;(2)建模根據(jù)已知條件與求解目標,把已知量與求解量盡量集中在有關(guān)的三角形中,建立一個解斜三角形的數(shù)學模型;(3)求解利用正弦定理或余弦定理有序地解出三角形,求得數(shù)學模型的解;(4)檢驗檢驗上述所求的解是否符合實際意義,從而得出實際問題的解正弦定理、余弦定理的綜合問題典題(2013年高考安徽卷)設ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c.若bc2a,3sin A5sin B,則角C_.分析:利用正弦定理把角的關(guān)系轉(zhuǎn)化為邊的關(guān)系,再利用余弦定理求角C. 本題主要考查正、余弦定理在解三角形中的綜合應用

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!