高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1

上傳人:痛*** 文檔編號:51681934 上傳時間:2022-01-28 格式:PPT 頁數(shù):16 大小:1.04MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1_第1頁
第1頁 / 共16頁
高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1_第2頁
第2頁 / 共16頁
高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 函數(shù)的單調(diào)性的課件導(dǎo)數(shù)研究函數(shù)的單調(diào)性課件 新人教A版選修1(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、學(xué)習(xí)目的學(xué)習(xí)目的:1.1.會從幾何角度直觀了解函數(shù)單會從幾何角度直觀了解函數(shù)單調(diào)性與其導(dǎo)數(shù)的關(guān)系,并會靈活調(diào)性與其導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用。應(yīng)用。2.2.通過對函數(shù)單調(diào)性的研究,加通過對函數(shù)單調(diào)性的研究,加深對函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)深對函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實際問題的能力,增強數(shù)數(shù)解決實際問題的能力,增強數(shù)形結(jié)合的思維意識。形結(jié)合的思維意識。復(fù)習(xí)引入復(fù)習(xí)引入:問題問題1 1:怎樣利用函數(shù)單調(diào)性的定義:怎樣利用函數(shù)單調(diào)性的定義來討論其在定義域的單調(diào)性來討論其在定義域的單調(diào)性1 1一般地,對于給定區(qū)間上的函數(shù)一般地,對于給定區(qū)間上的函數(shù)f(x)f(x),如果對于,如果對于屬于這個區(qū)間的任

2、意兩個自變量的值屬于這個區(qū)間的任意兩個自變量的值x x1 1,x x2 2,當,當x x1 1xx2 2時,時,(1)(1)若若f(xf(x1 1)f (x)f (x)f (x2 2) ),那么,那么f(x)f(x)在這個區(qū)間上是減函數(shù)在這個區(qū)間上是減函數(shù). .2 2由定義證明函數(shù)的單調(diào)性的一般步驟:由定義證明函數(shù)的單調(diào)性的一般步驟:(1)(1)設(shè)設(shè)x x1 1、x x2 2是給定區(qū)間的任意兩個值,且是給定區(qū)間的任意兩個值,且x x1 1 x x2.2.(2)(2)作差作差f(xf(x1 1) )f(xf(x2 2) ),并變形,并變形. .(3)(3)判斷差的符號,從而得函數(shù)的單調(diào)性判斷差的

3、符號,從而得函數(shù)的單調(diào)性. .舉例舉例例例1 討論函數(shù)討論函數(shù)y=x24x3的單調(diào)性的單調(diào)性.解:取解:取x x1 1xx2 2RR, f(xf(x1 1) )f(xf(x2 2)=)=(x x1 12 24x4x1 13 3)()(x x2 22 24x4x2 23 3) = =(x x1 1+x+x2 2)(x)(x1 1x x2 2)-4(x-4(x1 1x x2 2) = (x= (x1 1x x2 2)(x)(x1 1+x+x2 24 4) 則當則當x x1 1xx2 222時,時, x x1 1+x+x2 2404f(x)f(x2 2) ), 那么那么 y=f(x)y=f(x)單調(diào)

4、遞減。單調(diào)遞減。 當當2x2x1 1x040, f(xf(x1 1)f(x)0, f(x)0, 則則f(x)f(x)為增函數(shù)為增函數(shù); ; 如果如果f(x)0, f(x)0,-12x0,解得解得x0 x2x2,則則f(x)的單增區(qū)間為(的單增區(qū)間為(,0 0)和)和(2 2,). .再令再令6 6x2-12x0,-12x0,解得解得0 x2,0 x0, x0, f(x)=xlnx+x(lnx f(x)=xlnx+x(lnx)=lnx+1.)=lnx+1.當當lnx+10lnx+10時,解得時,解得x1/e.x1/e.則則f(x)f(x)的的單增區(qū)間是單增區(qū)間是(1/e,+).(1/e,+).當

5、當lnx+10lnx+10時,解得時,解得0 x1/e.0 x0時時,解得解得 x0.則函數(shù)的單增區(qū)間為則函數(shù)的單增區(qū)間為(0,+). 當當ex-10時時,解得解得x00得得:0 x1,:0 x1,則函數(shù)的則函數(shù)的單增區(qū)間為單增區(qū)間為(0,1).(0,1).解不等式解不等式y(tǒng) y 00得得:1x2,:1x0, (x)0, 則則f(x)f(x)為增函數(shù)為增函數(shù); ;如果如果f(x)0, f(x)0時,證明不等式時,證明不等式 ln(1+x)x 成立成立.21x1+x布置練習(xí)布置練習(xí) 作業(yè)作業(yè): P P134 134 練習(xí)練習(xí)1 1 ;2.2. 習(xí)題習(xí)題3.7-13.7-1;2.2.作業(yè):求函數(shù)作業(yè):求函數(shù)y=x-2sinx(0 x2y=x-2sinx(0 x2) 單調(diào)區(qū)間單調(diào)區(qū)間. .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!