2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)

上傳人:奇異 文檔編號:47749592 上傳時間:2021-12-25 格式:DOCX 頁數(shù):28 大?。?5.86KB
收藏 版權(quán)申訴 舉報 下載
2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)_第1頁
第1頁 / 共28頁
2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)_第2頁
第2頁 / 共28頁
2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)(理科)一輪【學(xué)案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(含答案)(28頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2019年高考數(shù)學(xué)(理科)一輪【學(xué) 案14】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 (含答案) 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 學(xué)案14導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 0導(dǎo)學(xué)目標(biāo):1.了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān) 系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的 單調(diào)區(qū)間(多項式函數(shù)一般不超過三次).2.了解函 數(shù)在某點取得極值的必要條件和充分條件, 會用 導(dǎo)數(shù)求函數(shù)的極大值、極小值(多項式函數(shù)一般 不超過三次)及最大(最小)值. 遵前準(zhǔn)備區(qū) 回生蔓材衛(wèi)實基里 [自主梳理: 1 .導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系: (1)若f‘(x)>0在(a, b)上恒成立,則f(x)在 (a, b)上是?函數(shù),f(x)>0的

2、解集與定義 域的交集的對應(yīng)區(qū)間為 區(qū)間; (2)若f‘(x)<0在(a, b)上恒成立,則f(x)在 (a, b)上是?函數(shù),f(x)<0的解集與定義 域的交集的對應(yīng)區(qū)間為 區(qū)間; (3)若在(a, b)上,f (x)R0,且 f (x)在(a, b)的任何子區(qū)間內(nèi)都不恒等于零 ? f(x)在(a, b) 上為?函數(shù),若在(a, b)上,f (x)W0,且 f(x)在(a, b)的任何子區(qū)間內(nèi)都不恒等于零 ? f(x)在(a, b)上為 函數(shù). 2 .函數(shù)的極值 (1)判斷f(X0)是極值的方法 一般地,當(dāng)函數(shù)/(x)在點X0處連續(xù)時, ①如果在X0附近的左側(cè),右側(cè) ,那么於0)

3、是極大值; ②如果在X0附近的左側(cè),右側(cè) ,那么於0)是極小值. (2)求可導(dǎo)函數(shù)極值的步驟 ①求,(X); ②求方程 的根; ③檢查/住)在方程 的根左右值的 符號.如果左正右負(fù),那么/(X)在這個根處取得 ;如果左負(fù)右正,那么?。┰谶@個根處 取得. I自我檢測】 1.已知?)的定義域為R,7(x)的導(dǎo)函數(shù),(x) 的圖象如圖所示,則 A./)在x=l處取得極小4 B.於)在x=l處取得極大值 C.於)是R上的增函數(shù) (L +) D.於)是(一8, 1)上的減函數(shù), 上的增函數(shù) 2. (2009廣東)函數(shù)於)=(x—3)ex的單調(diào)遞 增區(qū)間是

4、B. (0,3) A. (一8, 2) C?(1,4) D.(2, +oo) 3. (20xx濟(jì)寧模擬)已知函數(shù)y=f(x),其導(dǎo) 函數(shù)y=f (x)的圖象如圖所示, A.在(一8, 0)上為減函數(shù) B.在x=0處取極小值 C.在(4, +8)上為減函數(shù) D.在x= 2處取極大值 4.設(shè) p: f(x) = x3+2x2+ mx+ 1 在(一8) 十 )內(nèi)單調(diào)遞增)q: m>45則p是4的( ) 3 A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 5. (20xx福州模擬)已知函數(shù)f(x) = x3 + ax2 + bx+a

5、2^Ex = 遑堂活動區(qū) 1處取極值10,則f(2) = 突破恚點研析熱點 探究點一函數(shù)的單調(diào)性 啰J 1 已知 aG R,函數(shù) f(x)=( —x2 + ax)ex(x e R, e為自然對數(shù)的底數(shù)). (1)當(dāng)a= 2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)若函數(shù)f(x)在(—1,1)上單調(diào)遞增,求a的 取值范圍; (3)函數(shù)f(x)能否為R上的單調(diào)函數(shù),若能, 求出a的取值范圍;若不能,請說明理由. 變式遷移1 (2009浙江)已知函數(shù)f(x) = x3 + (1 —a)x2 —a(a+2)x+b(a, bGR). (1)若函數(shù)f(x)的圖象過原點,且在原點處

6、的 切線斜率是—3,求a, b的值; (2)若函數(shù)f(x)在區(qū)間(—1,1)上不單調(diào),求a 的取值范圍. 探究點二函數(shù)的極值 啰2 2 若函數(shù) f(x) = ax3— bx + 4)當(dāng) x = 2時, 函數(shù)f(x)有極值—4. 3 (1)求函數(shù)f(x)的解析式; (2)若關(guān)于x的方程f(x)=k有三個零點,求 實數(shù)k的取值范圍. 變式遷移2設(shè)x=1與x = 2是函數(shù)f(x) = aln x+bx2 + x的兩個極值點. (1)試確定常數(shù)a和b的值; (2)試判斷x=1, x = 2是函數(shù)f(x)的極大值 點還是極小值點,并說明理由. 探究點三 求閉區(qū)間上函數(shù)的最值 布J

7、3 (20xx六安模擬)已知函數(shù)f(x)=x3+ ax2+bx+c)曲線y=f(x)在點x= 1處的切線為 2- l: 3x —y+1 = 0)右 x=2時)y=f(x)有極值. 3 (1)求a, b, c的值; (2)求y=f(x)在[ — 3,1]上的最大值和最小值. 變式遷移 3 已知函數(shù) f(x) = ax3 + x2 + bx(其中常數(shù) a, bGR), g(x) = f(x) + f (x)是奇 函數(shù). (1)求f(x)的表達(dá)式; (2)討論g(x)的單調(diào)性,并求g(x)在區(qū)間[1,2] 上的最大值和最小值. 滲透教學(xué)思想 分類討論求函數(shù)的單調(diào)區(qū)間 - —

8、—、一 , 一… 1 C [例](12分)(2009遼寧)已知函數(shù)f(x) = ]x2 —ax+(a— 1)ln x, a>1. (1)討論函數(shù)f(x)的單調(diào)性; (2)證明:若a<5)則對任意xi)X2G(0)+ J Xi — f x2 ), xi#x2)有 >一1. x1—x2 【多角度審題】(1)先求導(dǎo),根據(jù)參數(shù)a的值 進(jìn)行分類討論;(2)若x1>x2)結(jié)論等價于f(x1) + x1>f(x2)+x2)若 x1

9、 (1)解f(x)的定義域為(0, / a— 1 f (x) = x — a + = x x— 1 x+ 1 — a x .[2 分] x— 1 2 ①若 a—1 = 1,即 a=2 時,f (x)=x 故f(x)在(0, +oo)上單調(diào)遞增. ②若a—1<1,而a>1,故10,故 f(x)在(a—1,1)上單調(diào) 遞減,在(0, a—1), (1, +8)上單調(diào)遞增. ③若a— 1>1,即a>2時,同理可得f(x)在(1, a— 1)上單調(diào)遞減)

10、 在(0,1), (a—1, +8)上單調(diào)遞增.[6分] (2)證明 考慮函數(shù)g(x) = f(x)+x 1 9 a— 1 x x- = 2x2—ax+(a—1)ln x + x. 則g (x) = x —(a—1) + ax1)2 (a—1) = 1 一 ( .a—1 — 1)2. 由于 10) 即g(x)在(0)+ 00)上單調(diào)遞增) 從而當(dāng) x1>x2>0 時)有 g(x1)一 g(x2)>0) 即 f(x1)一f(x2) + x1 —x2>0) J x1 — f x2 八 故 >—1.[10 分] x1—x2 f x2 — f

11、 x1 = > x2 —x1 八 一,,f x1 — f x2 當(dāng)0—1.[12 分] 【突破思維障礙】 (1)討論函數(shù)的單調(diào)區(qū)間的關(guān)鍵是討論導(dǎo)數(shù) 大于0或小于0的不等式的解集,一般就是歸結(jié) 為一個一元二次不 等式的解集的討論,在能夠通過因式分解得 到導(dǎo)數(shù)等于0的根的情況下,根的大小是分類的 標(biāo)準(zhǔn); (2)利用導(dǎo)數(shù)解決不等式問題的主要方法就 是構(gòu)造函數(shù),通過函數(shù)研究函數(shù)的性質(zhì)進(jìn)而解決 不等式問題. 課堂小結(jié) 1 .求可導(dǎo)函數(shù)單

12、調(diào)區(qū)間的一般步驟和方法: (1)確定函數(shù)f(x)的定義域; (2)求f(x),令f(x)=0,求出它在定義域 內(nèi)的一切實根; (3)把函數(shù)f(x)的間斷點(即f(x)的無定義點) 的橫坐標(biāo)和上面的各實數(shù)根按由小到大的順序 排列起來,然后用這些點把函數(shù)f(x)的定義區(qū)間 分成若干個小區(qū)間; (4)確定f(x)在各個開區(qū)間內(nèi)的符號,根據(jù) f (x)的符號判定函數(shù)f(x)在每個相應(yīng)小開區(qū)間 內(nèi)的增減性. 2 .可導(dǎo)函數(shù)極值存在的條件: (1)可導(dǎo)函數(shù)的極值點x0 一定滿足f (x0) = 0)但當(dāng)f (xi)=0時)xi不一定是極值點.如 f(x) = x3, f (0)=0,但 x =

13、 0不是極值點. (2)可導(dǎo)函數(shù)y=f(x)在點x。處取得極值的充 要條件是f (x0) = 0,且在x左側(cè)與右側(cè)f(x) 的符號不同. 3 .函數(shù)的最大值、最小值是比較整個定義 區(qū)間的函數(shù)值得出來的,函數(shù)的極值是比較極值 點附近的函數(shù)值得出來的.函數(shù)的極值可以有多 有少,但最值只有一個,極值只能在區(qū)間內(nèi)取得, 最值則可以在端點取得,有極值的未必有最值, 有最值的未必有極值,極值可能成為最值,最值 只要不在端點必定是極值. 4 .求函數(shù)的最值以導(dǎo)數(shù)為工具,先找到極 值點,再求極值和區(qū)間端點函數(shù)值,其中最大的 一個是最大值,最小的一個是最小值. 課后蟋習(xí)曜]- _■■■蜂規(guī)范善? (

14、滿分:75分) 一、選擇題(每小題5分,共25分) 1. (20xx大連模擬)設(shè)f(x), g(x)是R上的可 導(dǎo)函數(shù))f (x)、g (x)分別為f(x)、g(x)的導(dǎo)函 數(shù),且 f,(x) g(x) + f(x)g,(x)<0,貝U當(dāng) af(b)g(x) B. f(x)g(a)>f(a)g(x) C. f(x)g(x)>f(b)g(b) D. f(x)g(x)>f(a)g(a) 2.函數(shù)f(x)的定義域為開區(qū)間(a, b),導(dǎo)函數(shù) f(x)在(a, b)內(nèi)的圖象如圖所示,則函數(shù) f(x) 在開區(qū)間(a , b)內(nèi)有極小值點 ()

15、 A. 1個 C. 3個 D. 4個 3. (20xx嘉興模擬)若函數(shù)y=a(x3— x)在區(qū) 間 T,乎上為減函數(shù),則a的取值范圍是 3 3 () A. a>0 B. —11 D. 02 B . m>2 - 3 - 3 C. mW 2 D. m<2 5.設(shè) aW R,若函數(shù) y=eax+3x, xW R 有 大于零的極值點,則 ( ) A. a> — 3 B . a< — 3 八

16、1 c 1 C. a> — 3 D ? a< — 3 題號 1 2 3 4 5 答案 八填空題(每小題4分,共12分) x2 + a, … 6 . (2009遼丁)右函數(shù)f(x)= 4在x = 1處 X I 1 取極值,則a= . 7 .已知函數(shù)f(x)的導(dǎo)函數(shù)f(x)的圖象如右 圖所示,給出以下結(jié)論: ①函數(shù)f(x)在(一2, — 1)和(1,2)上是單調(diào)遞 增函數(shù); ②函數(shù)f(x)在(一2,0)上是單調(diào)遞增函數(shù),在 (0,2)上是單調(diào)遞減函數(shù); ③函數(shù)f(x)在 1處取得極小值; ④函數(shù)f(x)在 x= —1處取得極大值

17、)在x x = 0處取得極大值f(0). 則正確命題的序號是 .(填上所有 正確命題的序號). 8,已知函數(shù) f(x) = x3+ mx2+(m + 6)x+1 既 存在極大值又存在極小值,則實數(shù) m的取值范 圍為. 三、解答題(共38分) 2x+1 ,,一 9. (12分)求函數(shù)f(x) = x=的極值. 10. (12分)(20xx秦皇島模擬)已知a為實數(shù), 且函數(shù) f(x)= (x2—4)(x —a). (1)求導(dǎo)函數(shù)f (x); (2)若 f‘(—1)=0,求函數(shù) f(x)在[ — 2,2]上的 最大值、最小值. 11. (14分)(20xx汕頭大K擬)

18、已知函數(shù)f(x) = x3+mx2+nx—2的圖象過點(一1)—6),且函數(shù) g(x) = f (x) + 6x的圖象關(guān)于y軸對稱. (1)求m, n的值及函數(shù)y=f(x)的單調(diào)區(qū)間; (2)若a>0)求函數(shù) y=f(x)在區(qū)間(a—1)a + 1)內(nèi)的極值. 答案自主梳理 1 .⑴增增 (2)減減⑶增減 2 .(1)①f‘ (x)>0 f (x)<0 ②f (x)<0 ff (x)>0 (2)②f‘(x) = 0 ③f(x)=0極大值極小值 自我檢測 1. C 2.D 3.C 4.C 5. 18 解析 f (x)=3x2+2ax+b) 由題意f1;*即 1 + a+

19、 b+a?= 10, 3+2a+b=0, 得 a = 4,b=—11或a= — 3,b=3. 但當(dāng) a= —3 時)f (x)= 3x2 —6x+3>05 故不存在極值, ,a=4, b=— 11, f(2)=18. 課堂活動區(qū) 1例1i解題導(dǎo)引 (1)一般地,涉及到函數(shù) (尤其是一些非常規(guī)函數(shù))的單調(diào)性問題,往往可 以借助導(dǎo)數(shù)這一重要工具進(jìn)行求解. 函數(shù)在定義 域內(nèi)存在單調(diào)區(qū)間,就是不等式 f (x)>0或 f (x)<0在定義域內(nèi)有解.這樣就可以把問題轉(zhuǎn) 化為解不等式問題. (2)已知函數(shù)在某個區(qū)間上單調(diào)求參數(shù)問題, 通常是解決一個恒成立問題,方法有①分離參數(shù) 法,②利

20、用二次函數(shù)中恒成立問題解決. (3)一般地,可導(dǎo)函數(shù)f(x)在(a, b)上是增(或 減)函數(shù)的充要條件是:對任意xG(a, b),都有 f‘(x)A0(或 f(x)W0),且 f‘(x)在(a, b)的任 何子區(qū)間內(nèi)都不恒等于零.特別是在已知函數(shù)的 單調(diào)性求參數(shù)的取值范圍時,要注意“等號”是 否可以取到. 解⑴當(dāng) a=2 時,f(x)=( —x2 + 2x)ex, ? ??,(x)=( —2x+2)ex+( —x2+2x)ex=(— x2+ 2)ex. 令 f’ (x)>0,即(—x2+2)ex>0, :西>0,?.?一x2+2>0,解得一V2

21、單調(diào)遞增區(qū)間是(—也,柩. (2)二?函數(shù)f(x)在(一1,1)上單調(diào)遞增, .,f (x戶0對xG (—1,1)都成立. ? . f (x)= [― x2+ (a— 2)x+ a]ex /.[-x2+(a-2)x + a]ex>0 對 xG (—1,1)者B 成立. ? ex>0) /.-x2+(a-2)x+a>0 對 xG (— 1,1)都成 即 x2—(a—2)x—aW0對 xG (—1,1)恒成立. 設(shè) h(x) = x2— (a—2)x —a … h-1<0 a 3 只須滿足h 1Vo ,解得a>3. (3)若函數(shù)f(x)在R上單調(diào)遞減, 則f‘(x)W0對x

22、G R都成立,即[—x2+( —2)x+ a]ex< 0 對 x G R 都成立. .. ex>0,,x2—(a —2)x —aA0 對 xG R 都成 ??. A= (a—2)2 + 4aW0,即 a2 + 4W0,這是不 可能的. 故函數(shù)f(x)不可能在R上單調(diào)遞減. 若函數(shù)f(x)在R上單調(diào)遞增,則f (x戶0 對 xG R 都成立,即[―x 1 所以a的取值范圍為(一5, -2)U( — 2, 1). +(a —2)x+a]exR0對 x G R都成立. . ex>0,,x2—(a —2)x —aW0 對 xG R 都成 而x2— (a—2)x— aw 0不可能恒

23、成立) 故函數(shù)f(x)不可能在R上單調(diào)遞增. 綜上可知函數(shù)f(x)不可能是R上的單調(diào)函 數(shù). 變式遷移1解(1)由題意得f(x)=3x2 + 2(1 — a)x — a(a + 2),又 f 0 =b=0 ff 0 = —aa+2 = —3 x2 = a+2 3 解得 b=0, a= — 3 或 a=1. (2)由 f (x)=0,得 xi=a, 又f(x)在(一1,1)上不單調(diào)) —1

24、 【例2】解題導(dǎo)弓 本題研究函數(shù)的極值問 題.利用待定系數(shù)法,由極值點的導(dǎo)數(shù)值為 0, 以及極大值、極小值,建立方程組求解.判斷函 數(shù)極值時要注意導(dǎo)數(shù)為0的點不一定是極值點, 所以求極值時一定要判斷導(dǎo)數(shù)為 0的點左側(cè)與 右側(cè)的單調(diào)性,然后根據(jù)極值的定義判斷是極大 值還是極小值. 解(1)由題意可知f‘(x)=3ax2—b. f 2 =12a-b=0 于是 4 f 2 =8a-2b + 4=-- 3 a= 3’ b= 4 1 c 故所求的函數(shù)解析式為f(x)"x3— 4x + 4. 3 (2)由(1)可知 f‘(x)=x2 —4=(x —2)(x+2).

25、 令,(x) = 0 得 x = 2 或 x= —2, 當(dāng)x變化時,f (x), f(x)的變化情況如下表 所示: x (—oo)一 2) 一 2 (-2,2) 2 (2, 十 OO) f (x ) 十 0 一 0 十 f(x) 單調(diào)遞 增 極 大 單調(diào)遞 減 極 小 單調(diào) 遞增 f(x)有極大值28, 4 當(dāng)x = 2時,f(x)有極小值一3, 所以函數(shù)的大致圖象如圖, 故實數(shù)k的取值范圍為 4 28 3, 3 變式遷移 2 解(1)f(x) = a+ 2bx+1, x f 1 =a+2b+1 = 0 2 -f,2=a

26、+4b+1 = 0 .解得 a= —3,b 1 =—6. 2 x (2),(x)—— + (- 3)+1=- x—1 x —2 3x 函數(shù)定義域為(0, +0),列表 x (0,1) 1 (1,2) 2 (2, 十 OO) f (x ) 一 0 十 0 一 f(x) 單調(diào) 遞減 極小 值 單調(diào) 遞增 極大 值 單調(diào)遞 減 ,x= 1是f(x)的極小值點)x=2是f(x)的極 大值點. 1例3解題導(dǎo)引設(shè)函數(shù)f(x)在[a, b]上連 續(xù),在(a, b)內(nèi)可導(dǎo),求f(x)在[a, b]上的最大值 和最小值的步驟: (1)求函數(shù)y=f(x)在

27、(a, b)內(nèi)的極值. (2)將函數(shù)y=f(x)的各極值與端點處的函數(shù) 值f(a)、f(b)比較,其中最大的一個是最大值, 最小的一個是最小值. 解(1)由 f(x) = x3+ax2+bx+c) 得 f (x) = 3x2 + 2ax+ b, 當(dāng)x= 1時,切線l的斜率為3,可得2a + b =0;① 當(dāng)x = 2時,y=f(x)有極值,則,2=0, 3 3 可得 4a+3b + 4=0.② 由①②解得a=2)b= —4) 又切點的橫坐標(biāo)為x=1,,f(1) = 4. ,1 + a+b + c=4.「. c= 5. (2)由(1),得 f(x) = x3 + 2x2—4x

28、+5, ???,(x)=3x2+4x —4. 令 f (x) = 0)得 x= —2或 x = 2) 3 ,f(x)<0的解集為一2, 2 ,即為f(x)的減 3 區(qū)間. [ — 3, —2)、2, 1是函數(shù)的增區(qū)間. 3 一 2 95 又 f(—3)=8, f(—2)=13, f3=95,f(1) = 4, 2 2 7 ???y=f(x)在[―3,1]上的最大值為13,最小值 由95 為27. 變式遷移3解(1)由題意得f(x)=3ax2 + 2x + b. 因此 g(x) = f(x)+f (x) = ax3+(3a+1)x2 + (b+2)x+b. 由

29、為函數(shù)g(x)是奇函數(shù)) 所以g(—x)= — g(x),即對任意實數(shù)x, 有 a(— x)3+ (3a + 1)( — x)2 +(b + 2)(-x)+b =—[ax3+ (3a+1)x2+(b+2)x+ b]) 從而 3a+1 = 0)b=0)解得 a= — t, b=0) 3 1c c 因此f(x)的表達(dá)式為f(x)=--x3 + x2. 3 1 。 一 (2)由(1)知 g(x)= —3x3+2x, 所以 g (x)= —x2 + 2,令 g (x) = 0, 解得Xi = —也)X2 =也) 則當(dāng) x< —V2或 x>V2時)g (x)<0) 從

30、而g(x)在區(qū)間(―8, 《2, +oo) 上是減函數(shù); 當(dāng)一420) 從而g(x)在區(qū)間(一爽,爽)上是增函數(shù). 由前面討論知,g(x)在區(qū)間[1,2]上的最大值 與最小值只能在x=1,也,2時取得, 而 g(i)=5, g(/)=平,g(2)=3. 3 3 3 因此g(x)在區(qū)間[1,2]上的最大值為g(血)= 4,2 3, 4 最小值為g(2)=3. 課后練習(xí)區(qū) 1. C 2.A 3.A 4.A 5,B 6. 3 解析.?千(x) = (df) x+ 1 x2 + a ?x+1 — x2+a x+1 ― x+1 2 ― x

31、2+ 2x— a x+1 2 又??.x=1為函數(shù)的極值,.?? f (1) = 0. ???1 + 2X1—a=0,即 a=3. 7 .②④ 解析 觀察函數(shù)f(x)的導(dǎo)函數(shù)f(x)的圖 象,由單調(diào)性、極值與導(dǎo)數(shù)值的關(guān)系直接判斷. 8 .(一巴―3)U (6, 十 * 解析 f (x)=3x2+2mx+m + 6=0 有兩個 不等實根,則 a= 4m2—12X(m + 6)>0,?,. m>6 或 m< 一3. f (x)= 2x+1 (x2 + 2 —2 x+2 x—1 x2+2 2 由 f (x) = 0 得 x = — 4. 2.1. (4

32、 分) 當(dāng) xG (—oo, —2)時 f(x)<0,當(dāng) xG (―2,1) 時f (x)>0,故x= —2是函數(shù)的極小值點,故 f(x)的極小值為 f( — 2)=— 1 2, (8 分) 當(dāng) xG (―2,1)時 f(x)>0,當(dāng) xG (1, + oo) 時 f‘(x)<0, 故x = 1是函數(shù)的極大值點) 所以f(x)的極大值為f(1)= 1. (12 分) 10.解(1)由 f(x) = x3-ax2-4x+4a5 得 f (x) = 3x2 — 2ax — (4分) 一 1 (2)因為 ff (-1)=0,所以 a=2 所以 f(x) = x3—

33、1x2—4x+2, f (x)=3x2—x 一 4. 又 f (x) = 0)所以 x = 4或 x= — 1. 3 p " 50 9 又f3 = —27, f(—1)=2 f( —2)=0, f(2) = 0,所以 f(x)在[—2,2]上的 最大值、最小值分別為2、-黑 (12 分) 11.解(1)由函數(shù)f(x)圖象過點(一1 得 m 1) — 6), 3. 由 f(x)=x3+mx2+nx —2) 得 f (x) = 3x2 + 2mx+n) 則 g(x)=> (x) + 6x=3x2+(2m+6)x+n. 而g(x)的圖象關(guān)于y軸對稱,所以一2m*

34、 2X3 =0. 所以m=— 3,代入①,得n = 0. (4 分) 于是 f (x) = 3x2 —6x = 3x(x —2). 由 f (x)>0)得 x>2 或 x<0) 故f(x)的單調(diào)遞增區(qū)間是(—H 0)U(25 + 由 f (x)<0,得 0

35、OO) f (x ) 十 0 一 0 + f(x) / 極大 值 極小 值 Z (10 分) 由此可得: 當(dāng)03時,f(x)在(a—1, a+1)內(nèi)無極 值. (12 綜上得:當(dāng)03 時)f(x)無極 值. (14 分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!