高三文科數(shù)學(xué) 通用版二輪復(fù)習(xí):第1部分 專題1 突破點(diǎn)3 平面向量 Word版含解析
《高三文科數(shù)學(xué) 通用版二輪復(fù)習(xí):第1部分 專題1 突破點(diǎn)3 平面向量 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三文科數(shù)學(xué) 通用版二輪復(fù)習(xí):第1部分 專題1 突破點(diǎn)3 平面向量 Word版含解析(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 突破點(diǎn)3 平面向量 提煉1 平面向量共線、垂直的兩個(gè)充要條件 若a=(x1,y1),b=(x2,y2),則: (1)a∥b?a=λb(b≠0)?x1y2-x2y1=0. (2)a⊥b?ab=0?x1x2+y1y2=0. 提煉2 數(shù)量積常見的三種應(yīng)用 已知兩個(gè)非零向量a=(x1,y1),b=(x2,y2),則 (1)證明向量垂直:a⊥b?ab=0?x1x2+y1y2=0. (2)求向量的長(zhǎng)度:|a|==. (3)求向量的夾角:cos〈a,b〉==. 提煉3 平面向量解題中應(yīng)熟知的常用結(jié)論 (1)A,B,C三點(diǎn)共線的充要條件是存在實(shí)數(shù)λ,μ,有=λ+μ,且λ+μ=
2、1. (2)C是線段AB中點(diǎn)的充要條件是=(+). (3)G是△ABC的重心的充要條件為++=0,若△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),C(x3,y3),則△ABC的重心坐標(biāo)為. (4)==?P為△ABC的垂心. (5)非零向量a,b垂直的充要條件:a⊥b?ab=0?|a+b|=|a-b|?x1x2+y1y2=0. (6)向量b在a的方向上的投影為|b|cos θ=, 向量a在b的方向上的投影為|a|cos θ=. 回訪1 平面向量的線性運(yùn)算 1.(20xx全國(guó)卷Ⅰ)已知點(diǎn)A(0,1),B(3,2),向量=(-4,-3),則向量=( ) A.
3、(-7,-4) B.(7,4) C.(-1,4) D.(1,4) A 設(shè)C(x,y),則=(x,y-1)=(-4,-3), 所以從而=(-4,-2)-(3,2)=(-7,-4).故選A.] 2.(20xx全國(guó)卷Ⅰ)設(shè)D,E,F(xiàn)分別為△ABC的三邊BC,CA,AB的中點(diǎn),則+=( ) A. B. C. D. C 如圖,+=+++ =+=(+) =2=.] 回訪2 平面向量的數(shù)量積 3.(20xx全國(guó)卷Ⅱ)向量a=(1,-1),b=(-1,2),則(2a+b)a=( ) A.-1 B.0 C.1 D.2 C 法一:∵a=(1,-1),b=
4、(-1,2),∴a2=2,ab=-3, 從而(2a+b)a=2a2+ab=4-3=1. 法二:∵a=(1,-1),b=(-1,2), ∴2a+b=(2,-2)+(-1,2)=(1,0), 從而(2a+b)a=(1,0)(1,-1)=1,故選C.] 4.(20xx全國(guó)乙卷)設(shè)向量a=(x,x+1),b=(1,2),且a⊥b,則x=__________. - ∵a⊥b,∴ab=0,即x+2(x+1)=0,∴x=-.] 5.(20xx全國(guó)卷)已知向量a,b夾角為45,且|a|=1,|2a-b|=,則|b|=________. 3 ∵a,b的夾角為45,|a|=1, ∴ab=|a||
5、b|cos 45=|b|, |2a-b|2=4-4|b|+|b|2=10, ∴|b|=3.] 回訪3 數(shù)量積的綜合應(yīng)用 6.(20xx全國(guó)卷Ⅰ)已知兩個(gè)單位向量a,b的夾角為60,c=ta+(1-t)b,若bc=0,則t=________. 2 |a|=|b|=1,〈a,b〉=60. ∵c=ta+(1-t)b,∴bc=tab+(1-t)b2=t11+(1-t)1=+1-t=1-. ∵bc=0,∴1-=0,∴t=2.] 熱點(diǎn)題型1 平面向量的運(yùn)算 題型分析:該熱點(diǎn)是高考的必考點(diǎn)之一,考查方式主要體現(xiàn)在以下兩個(gè)方面:一是以平面圖形為載體考查向量的線性運(yùn)算;二是以向量的共線與垂
6、直為切入點(diǎn),考查向量的夾角、模等. (1)(20xx深圳二模)如圖31,正方形ABCD中,M是BC的中點(diǎn),若=λ+μ,則λ+μ=( ) 圖31 A. B. C. D.2 (2)(20xx天津高考)已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使得DE=2EF,則的值為( ) A.- B. C. D. (1)B (2)B (1)法一:建立平面直角坐標(biāo)系如圖所示,設(shè)正方形的邊長(zhǎng)為2,則A(0,0),B(2,0),C(2,2),M(2,1),D(0,2),所以=(2,2),=(2,1),=(-2,2).由=λ
7、+μ,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以解得所以λ+μ=,故選B. 法二:因?yàn)椋溅耍蹋溅?+)+μ(+)=λ+μ(-+)=(λ-μ)+,所以得所以λ+μ=,故選B. (2)如圖所示,=+. 又D,E分別為AB,BC的中點(diǎn), 且DE=2EF,所以=,=+=, 所以=+. 又=-, 則=(-) =-2+2- =2-2-. 又||=||=1,∠BAC=60, 故=--11=.故選B.] 1.平面向量的線性運(yùn)算要抓住兩條主線:一是基于“形”,通過作出向量,結(jié)合圖形分析;二是基于“數(shù)”,借助坐標(biāo)運(yùn)算來實(shí)現(xiàn).
8、 2.正確理解并掌握向量的概念及運(yùn)算,強(qiáng)化“坐標(biāo)化”的解題意識(shí),注重?cái)?shù)形結(jié)合思想、方程思想與轉(zhuǎn)化思想的應(yīng)用. 提醒:運(yùn)算兩平面向量的數(shù)量積時(shí),務(wù)必要注意兩向量的方向. 變式訓(xùn)練1] (1)已知向量a=(-1,2),b=(3,1),c=(x,4),若(a-b)⊥c,則c(a+b)=( ) A.(2,12) B.(-2,12) C.14 D.10 (2)已知e1,e2是不共線向量,a=me1+2e2,b=ne1-e2,且mn≠0.若a∥b,則=__________. 【導(dǎo)學(xué)號(hào):859520xx】 (1)C (2)-2 (1)易知a-b=(-4,1),由(a-b)
9、⊥c,可得(-4)x+14=0,即-4x+4=0,解得x=1,∴c=(1,4). 而a+b=(2,3),∴c(a+b)=12+43=14.故選C. (2)∵a∥b,∴a=λb,即me1+2e2=λ(ne1-e2),則解得=-2.] 熱點(diǎn)題型2 三角與向量的綜合問題 題型分析:平面向量作為解決問題的工具,具有代數(shù)形式和幾何形式的“雙重型”,高考常在平面向量與三角函數(shù)的交匯處命題,通過向量運(yùn)算作為題目條件. (名師押題)已知向量a=,b=(cos x,-1). (1)當(dāng)a∥b時(shí),求cos2x-sin 2x的值; (2)設(shè)函數(shù)f(x)=2(a+b)b,已知在△ABC中,內(nèi)角A,B,C
10、的對(duì)邊分別為a,b,c.若a=,b=2,sin B=,求y=f(x)+4cos 的取值范圍. 解] (1)∵a∥b,∴cos x+sin x=0,2分 ∴tan x=-,4分 ∴cos2x-sin 2x===.6分 (2)f(x)=2(a+b)b=sin +,8分 由正弦定理得=,可得sin A=.9分 ∵b>a,∴A=,10分 y=f(x)+4cos=sin-.11分 ∵x∈, ∴2x+∈, ∴-1≤y≤-, 即y的取值范圍是.12分 平面向量與三角函數(shù)問題的綜合主要利用向量數(shù)量積運(yùn)算的坐標(biāo)形式,多與同角三角函數(shù)關(guān)系、誘導(dǎo)公式以及和角與倍角等公式求值等問題相結(jié)合,計(jì)算的準(zhǔn)確性和三角變換的靈活性是解決此類問題的關(guān)鍵點(diǎn). 變式訓(xùn)練2] 在平面直角坐標(biāo)系xOy中,已知向量m=,n=(sin x,cos x),x∈. (1)若m⊥n,求tan x的值; (2)若m與n的夾角為,求x的值. 解] (1)若m⊥n,則mn=0. 由向量數(shù)量積的坐標(biāo)公式得sin x-cos x=0,4分 ∴tan x=1.6分 (2)∵m與n的夾角為,∴mn=|m||n|cos ,即sin x-cos x=,8分 ∴sin =.10分 又∵x∈,∴x-∈, ∴x-=,即x=.12分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)后保健知識(shí)講座
- 《音樂小屋》課件2
- 2019屆高考物理二輪復(fù)習(xí)專題二能量與動(dòng)量第7講動(dòng)能定理的應(yīng)用課件
- 灝忓涓€騫寸駭鍥介槻鏁欒偛璇句歡
- 高中地理一輪二輪三輪復(fù)習(xí)氣象災(zāi)害集備1
- 人教英語必修二同課異構(gòu)課件:Unit2TheOlympicGamesSectionAWarmingUpandReading2
- 人教版小學(xué)語文二年級(jí)上冊(cè)《黃山奇石》PPT課件
- 6分?jǐn)?shù)混合運(yùn)算(二)第1-課時(shí)課件
- 黃河的主人(教育精品)
- 術(shù)前肺功能測(cè)定及其臨床意義
- 變態(tài)心理學(xué)和健康心理學(xué)知識(shí)專題知識(shí)宣講
- 肝纖維化無創(chuàng)性診斷--課件
- 512垂線(1)(教育精品)
- 熒光幻彩金蔥粉耐溶劑金蔥粉
- 第4章音頻媒體2