專題62 利用三角函數(shù)值域求范圍問題(解析版)
《專題62 利用三角函數(shù)值域求范圍問題(解析版)》由會(huì)員分享,可在線閱讀,更多相關(guān)《專題62 利用三角函數(shù)值域求范圍問題(解析版)(49頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專題62 利用三角函數(shù)值域求范圍問題 一、單選題 1.在銳角中,角、、所對(duì)的邊分別為、、,已知,且,則的取值范圍是( ) A. B. C. D. 【答案】B 【分析】 由已知條件得出,利用正弦定理結(jié)合兩角差的正弦公式得出,利用為銳角三角形,求出角的取值范圍,再利用三角恒等變換思想化簡(jiǎn)所求代數(shù)式,利用正弦型函數(shù)的有界性可求得的取值范圍. 【詳解】 由于且,可得, 由正弦定理可得,即, ,,可得,,即, 為銳角三角形,可得,解得, 所以,, ,可得,, 所以,. 故選:B. 【點(diǎn)睛】 思路點(diǎn)睛:解三角形的問題中,求解與三角形內(nèi)角的代數(shù)式的取值范圍問題時(shí)
2、,一般利用三個(gè)內(nèi)角之間的關(guān)系轉(zhuǎn)化為以某角為自變量的三角函數(shù)來求解,同時(shí)不要忽略了對(duì)象角的取值范圍的求解. 2.已知點(diǎn)分別是雙曲線的左、右焦點(diǎn),過點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若是銳角三角形,則該雙曲線離心率的取值范圍是( ) A. B. C. D. 【答案】D 【分析】 由題意可用雙曲線參數(shù)表示,由是銳角三角形,令結(jié)合余弦定理即得,進(jìn)而可求離心率的取值范圍. 【詳解】 由題意知,若如下圖示,則,, ∴,, 令,則有, 是銳角三角形,有,得 ∴,而可知:的范圍 故選:D 【點(diǎn)睛】 關(guān)鍵點(diǎn)點(diǎn)睛:利用雙曲線參數(shù)表示三角形的三邊,應(yīng)用余弦定理結(jié)合銳角
3、三角形中內(nèi)角余弦值范圍為,雙曲線離心率求離心率范圍. 3.已知中,角、、所對(duì)應(yīng)的邊分別為、、,且,若的面積為,則的取值范圍為( ) A. B. C. D. 【答案】B 【分析】 由三角形的面積公式可得,由余弦定理可得,利用可求得,可得出,并求得,利用三角恒等變換思想得出,結(jié)合正弦函數(shù)的基本性質(zhì)可求得結(jié)果. 【詳解】 由三角形的面積公式可得,可得, ,由余弦定理可得, 由,可得,解得,, ,可得,則, 所以,, ,,則, 因此,, 故選:B. 【點(diǎn)睛】 方法點(diǎn)睛:在解三角形的問題中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“
4、邊化角”或“角化邊”,變換原則如下: (1)若式子中含有正弦的齊次式,優(yōu)先考慮正弦定理“角化邊”; (2)若式子中含有、、的齊次式,優(yōu)先考慮正弦定理“邊化角”; (3)若式子中含有余弦的齊次式,優(yōu)先考慮余弦定理“角化邊”; (4)代數(shù)式變形或者三角恒等變換前置; (5)含有面積公式的問題,要考慮結(jié)合余弦定理求解; (6)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到三角形的內(nèi)角和定理. 二、解答題 4.在中,分別為角所對(duì)的邊.在①;②;③這三個(gè)條件中任選一個(gè),作出解答. (1)求角的值; (2)若為銳角三角形,且,求的面積的取值范圍. 【答案】條件選擇見解析;(1);(2)
5、. 【分析】 (1)選擇條件①,利用正弦定理化簡(jiǎn)已知條件,再利用兩角和的正弦公式化簡(jiǎn)得,根據(jù)三角形內(nèi)角性質(zhì)得出且,即可求出角的值;選擇條件②,根據(jù)向量的數(shù)量積公式以及三角形的面積公式,化簡(jiǎn)得出,即可求出角的值;選擇條件③,根據(jù)兩角和的正弦公式和輔助角公式,化簡(jiǎn)的出,從而可求出角的值; (2)根據(jù)題意,利用正弦定理邊角互化得出,,再根據(jù)三角形面積公式化簡(jiǎn)得出,由為銳角三角形,求出角的范圍,從而得出的面積的取值范圍. 【詳解】 解:(1)選①, 由正弦定理得:, ∴, ∵,∴,∴, ∵,∴; 選②, ∴, ∴, ∵,∴,則, ∴; 選③, 得, ∴, ∴, ∵
6、,∴, ∴,∴. (2)已知為銳角三角形,且, 由正弦定理得:, ∴,, ∴, ∵為銳角三角形, ∴, ∴,∴. 【點(diǎn)睛】 關(guān)鍵點(diǎn)點(diǎn)睛:本題考查正弦定理的邊角互化、兩角和的正弦公式、輔助角公式、向量的數(shù)量積的應(yīng)用,考查三角形的面積公式以及三角形內(nèi)角的性質(zhì),根據(jù)三角函數(shù)的性質(zhì)求區(qū)間內(nèi)的最值從而求出三角形的面積的取值范圍是解題的關(guān)鍵,考查轉(zhuǎn)化思想和化簡(jiǎn)運(yùn)算能力. 5.在銳角中,角所對(duì)的邊分別是a,b,c,. (1)求角A的大??; (2)求的取值范圍. 【答案】(1);(2). 【分析】 (1)由已知得,利用同角三角函數(shù)基本關(guān)系式可求,結(jié)合的范圍可求的值. (2)利
7、用三角函數(shù)恒等變換的應(yīng)用可求,由題意可求范圍,進(jìn)而利用正弦函數(shù)的性質(zhì)即可求解其取值范圍. 【詳解】 解:(1)∵,結(jié)合余弦定理,可得: ,∴,∴ 又∵,∴ (2)因?yàn)?,,所以,所以? 所以 ∵是銳角三角形,所以,解得 ∴, ∴ ∴, ∴ 綜上,的取值范圍是 【點(diǎn)睛】 解三角形的基本策略:一是利用正弦定理實(shí)現(xiàn)“邊化角”,二是利用余弦定理實(shí)現(xiàn)“角化邊”;求三角形面積的最大值也是一種常見類型,主要方法有兩類,一是找到邊之間的關(guān)系,利用基本不等式求最值,二是利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角的函數(shù),利用函數(shù)思想求最值. 6.某高檔小區(qū)有一個(gè)池塘,其形狀為直
8、角,,百米,百米,現(xiàn)準(zhǔn)備養(yǎng)一批觀賞魚供小區(qū)居民觀賞. (1)若在內(nèi)部取一點(diǎn)P,建造APC連廊供居民觀賞,如圖①,使得點(diǎn)P是等腰三角形PBC的頂點(diǎn),且,求連廊的長(zhǎng); (2)若分別在AB,BC,CA上取點(diǎn)D,E,F(xiàn),建造連廊供居民觀賞,如圖②,使得為正三角形,求連廊長(zhǎng)的最小值. 【答案】(1)百米;(2)百米. 【分析】 (1)先在三角形PBC中利用已知條件求出PC的長(zhǎng)度,再在三角形PAC中利用余弦定理求出PA的長(zhǎng)度,即可求解; (2)設(shè)出等腰三角形的邊長(zhǎng)以及角CEF,則可求出CF的長(zhǎng)度,進(jìn)而可得AF的長(zhǎng)度,再利用角的關(guān)系求出角ADF的大小,然后在三角形ADF中利用正弦定理化簡(jiǎn)出a
9、的表達(dá)式,再利用三角函數(shù)的最值即可求出a的最小值,進(jìn)而可以求解. 【詳解】 解:(1)因?yàn)镻是等腰三角形PBC的頂點(diǎn),且, 又,所以,,又因?yàn)椋裕? 則在三角形PAC中,由余弦定理可得: ,解得, 所以連廊百米; (2)設(shè)正三角形DEF的邊長(zhǎng)為a,, 則,,且,所以, 在三角形ADF中,由正弦定理可得: ,即, 即,化簡(jiǎn)可得, 所以(其中為銳角,且), 即邊長(zhǎng)的最小值為百米, 所以三角形DEF連廊長(zhǎng)的最小值為百米. 【點(diǎn)評(píng)】 方法點(diǎn)睛:在求三角形邊長(zhǎng)以及最值的問題時(shí),常常設(shè)出角度,將長(zhǎng)度表示成角度的三角函數(shù),利用三角函數(shù)的值域求最值. 7.如圖,在平面四邊形
10、中,,,,是等邊三角形. (1)求(用含的式子表示)﹔ (2)求的取值范圍. 【答案】(1);(2) 【分析】 (1)在中,利用正弦定理即可求解. (2)以點(diǎn)為坐標(biāo)原點(diǎn),為軸,過垂直與為軸,建立平面直角坐標(biāo)系,過點(diǎn)作,垂足為,從而可得,根據(jù)三角函數(shù)的性質(zhì)即可求解. 【詳解】 (1)在中,,,, 所以, 由正弦定理可得, 即. (2)由,是等邊三角形, 所以,,由(1)知, , 以點(diǎn)為坐標(biāo)原點(diǎn),為軸,過垂直與為軸, 建立平面直角坐標(biāo)系,如圖: 過點(diǎn)作,垂足為, 由題意可得, 所以, , 所以, 由,, 所以, 所以, 所以
11、 【點(diǎn)睛】 關(guān)鍵點(diǎn)點(diǎn)睛:解題的關(guān)鍵是建立坐標(biāo)系,得出關(guān)系式,將問題轉(zhuǎn)化,借助于三角函數(shù)進(jìn)行求解,考查了運(yùn)算能力、轉(zhuǎn)化能力以及分析能力. 8.如圖,在平面四邊形中,, (1)若,求 (2)若,求的最大值 【答案】(1);(2). 【分析】 (1)利用正弦定理可求的長(zhǎng). (2)設(shè),利用正弦定理和余弦定理可得關(guān)于的表達(dá)式,利用正弦型函數(shù)的性質(zhì)可求其最大值. 【詳解】 解:(1)因?yàn)椋? 所以, 則, 在中,,,, 由正弦定理可得:, 則. (2)設(shè),則 在中,,, 由正弦定理可得, 則, 在中,,,, 由余弦定理可得:, 則 , 當(dāng)即, ,
12、 故的最大值為. 【點(diǎn)睛】 思路點(diǎn)睛:解三角形中,注意三角形中共有七個(gè)幾何量(三邊三角以及外接圓的半徑),一般地,知道兩角及一邊,用正弦定理,知道兩邊及一邊所對(duì)的角,可以用余弦定理,也可以用正弦定理(結(jié)合要求解的目標(biāo)確定方法). 9.在①,②,③的面積,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并作答.(如果選擇多個(gè)條件作答,則按所選的第一個(gè)條件給分) 在三角形中,角所對(duì)的邊分別是,且角為銳角. (1)求角; (2)若,求的取值范圍. 【答案】(1);(2). 【分析】 (1)若選①:利用同角三角函數(shù)關(guān)系和正弦定理可化簡(jiǎn)已知等式求得,進(jìn)而得到; 若選②:利用正弦定理角化邊求
13、得,結(jié)合為銳角得到; 若選③:根據(jù)三角形面積公式和向量數(shù)量積定義可構(gòu)造方程求得,進(jìn)而得到; (2)利用正弦定理將化為,利用兩角和差正弦公式和輔助角公式化簡(jiǎn)可知,利用正弦型函數(shù)值域的求法可求得所求范圍. 【詳解】 (1)若選①:由得: , 由正弦定理得:,即,, 又為銳角,. 若選②:由正弦定理得:, ,,, 又為銳角,. 若選③:,又, , 為銳角,,,. (2)由正弦定理得:, , , , ,,,, 即的取值范圍為. 【點(diǎn)睛】 思路點(diǎn)睛:解三角形問題中,求解邊長(zhǎng)之和的范圍類問題的基本思路是利用正弦定理將邊化角,結(jié)合三角恒等變換公式將問題轉(zhuǎn)化為三角函數(shù)
14、值域的求解問題,利用三角函數(shù)值域的求解方法求得范圍. 10.已知向量,,,其中A是的內(nèi)角. (1)求角A的大??; (2)若角A,B,C所對(duì)的邊分別為a,b,c,且,,求的取值范圍. 【答案】(1);(2). 【分析】 (1)由和三角恒等變換可得答案; (2)由和可得,然后由正弦定理可得,然后利用三角函數(shù)的知識(shí)可得答案. 【詳解】 (1)因?yàn)椋? 即有,(),,(), 又A為的內(nèi)角,所以; (2)由,得為鈍角,從而 由正弦定理,得 所以,, 則 又,所以, 則 11.在中,角、、的對(duì)邊分別為、、.已知. (1)若,求. (2)求的取值范圍. 【答案】(1)
15、;(2) 【分析】 (1)已知等式利用正弦定理化簡(jiǎn),再利用誘導(dǎo)公式變形,根據(jù)不為0求出的值,即可確定出A的度數(shù); (2)由第一問得到,代入原式,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),根據(jù)題意求出這個(gè)角的范圍,利用正弦函數(shù)的值域即可確定出范圍. 【詳解】 (1)由正弦定理得, , , 即, , ,, ,; (2)由(1)得, , 又, ,, ,, ,, 則的取值范圍. 【點(diǎn)睛】 此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的定義域與值域,熟練掌握定理及公式是解本題的關(guān)鍵. 12.已知銳角中,角,,所對(duì)的邊分別
16、為,,,且. (1)求的值; (2)若,求的取值范圍. 【答案】(1);(2). 【分析】 (1)根據(jù)誘導(dǎo)公式、同角三角函數(shù)平方關(guān)系和正弦定理邊化角,可整理已知等式求得,進(jìn)而得到結(jié)果; (2)利用正弦定理、兩角和差正弦公式和輔助角公式可將轉(zhuǎn)化為,由正弦型函數(shù)值域的求解方法可求得結(jié)果. 【詳解】 (1)由題意得:, , 由正弦定理得:,, ,. (2)由正弦定理得:,, , ,, . 為銳角三角形,,即,解得:, ,,, 即的取值范圍為. 【點(diǎn)睛】 方法點(diǎn)睛:解三角形問題中,已知一邊及其所對(duì)角,求解與另外兩邊長(zhǎng)有關(guān)的取值范圍問題的常用方法是利用正弦定理將邊
17、化角,將問題轉(zhuǎn)化為正弦型函數(shù)值域的求解問題. 13.的內(nèi)角,,對(duì)應(yīng)邊分別為,,,且. (1)求的大?。? (2)若為銳角三角形,求的取值范圍. 【答案】(1);(2). 【分析】 (1)由,利用余弦定理化簡(jiǎn)得,再結(jié)合余弦定理,即可求解; (2)由(1)和為銳角三角形,求得,利用三角恒等變換的公式,化簡(jiǎn)得到,結(jié)合三角函數(shù)的性質(zhì),即可求解. 【詳解】 (1)因?yàn)椋捎嘞叶ɡ?,可得? 整理得,又由, 因?yàn)椋? (2)因?yàn)闉殇J角三角形,可得,, 因?yàn)?,所以,可得? 又由 , 因?yàn)?,可得? 所以的取值范圍為. 【點(diǎn)睛】 對(duì)于解三角形問題,通常利用正弦定理進(jìn)
18、行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值. 利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,結(jié)合正、余弦定理求解. 14.在中,角,,所對(duì)的邊分別為,,,已知. (1)求角的大?。? (2)若,求周長(zhǎng)的取值范圍. 【答案】(1);(2). 【分析】 (1)利用同角三角函數(shù)的基本關(guān)系及正弦定理將角化邊,再利用余弦定理計(jì)算可得; (2)利用正弦定理將邊化角,再根據(jù)三角函數(shù)的性質(zhì)計(jì)算可得; 【詳解】 解:(1)由題意知, 即. 由正弦定理,可得. 則由余弦定理,可得. 又
19、因?yàn)?,所? (2)由正弦定理,, 所以,. 則的周長(zhǎng) . 因?yàn)椋?,所以? 所以, 所以周長(zhǎng)的取值范圍是. 【點(diǎn)睛】 解三角形的基本策略:一是利用正弦定理實(shí)現(xiàn)“邊化角”,二是利用余弦定理實(shí)現(xiàn)“角化邊”;求三角形面積的最大值也是一種常見類型,主要方法有兩類,一是找到邊之間的關(guān)系,利用基本不等式求最值,二是利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角的函數(shù),利用函數(shù)思想求最值. 15.在銳角中,內(nèi)角所對(duì)的邊分別為,已知的面積. (1)求; (2)作角的平分線交邊于點(diǎn),記和的面積分別為,求的取值范圍. 【答案】(1);(2). 【分析】 (1)由結(jié)合整理可得,問題得解; (2)
20、整理可得,結(jié)合正弦定理得,由銳角三角形問題得解. 【詳解】 (1),整理得, 因此,又,所以; (2), 由正弦定理得:, 因?yàn)?,? 所以. 【點(diǎn)睛】 方法點(diǎn)睛:本題主要考查了三角形面積公式及正、余弦定理,關(guān)鍵點(diǎn)是利用已知和余弦定理得到,考查方程思想及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題. 16.已知函數(shù) (1)求函數(shù)的單調(diào)遞增區(qū)間 (2)若銳角三角形ABC中,角A、B、C的對(duì)邊分別為a,b,c,且,求面積S的取值范圍 【答案】(1);(2) 【分析】 (1)先利用三角恒等變換公式化簡(jiǎn)解析式得到,根據(jù)正弦函數(shù)單調(diào)性,列出不等式求解,即可得出結(jié)果; (2)由(1)先
21、求出,由正弦定理得:,再根據(jù)銳角三角形求出B的取值范圍,進(jìn)而求出c的取值范圍,從而得到面積的取值范圍. 【詳解】 (1) 由 解得:, 故函數(shù)的單調(diào)遞增區(qū)間為. (2),, 又,,,又, 在中,由正弦定理得:,得 又為銳角三角形,且,故,解得 ,即 面積S的取值范圍是: 【點(diǎn)睛】 易錯(cuò)點(diǎn)睛:本題考查利用正弦定理求三角形邊長(zhǎng)范圍的最值,解本題時(shí)要注意的事項(xiàng):求角的范圍時(shí),是在為銳角三角形的前提下,考查學(xué)生的轉(zhuǎn)化能力與運(yùn)算解能力,屬于中檔題. 17.已知中,內(nèi)角、、所對(duì)的邊分別為、、,且滿足. (1)求角的大??; (2)若邊長(zhǎng),求的周長(zhǎng)最大值. 【答案】(
22、1);(2). 【分析】 (1)利用正弦定理邊角互化可得出,利用余弦定理求出的值,再結(jié)合角的取值范圍可求得角的值; (2)利用正弦定理結(jié)合三角函數(shù)可得,由可得,結(jié)合正弦函數(shù)的基本性質(zhì)可求得的周長(zhǎng)最大值. 【詳解】 (1),根據(jù)正弦定理得,, 即,由余弦定理得. 又,所以; (2),,,由正弦定理得, 可得:,, , 由可得,可得. . 因此,的周長(zhǎng)的最大值為. 【點(diǎn)睛】 方法點(diǎn)睛: 1.解三角形的基本策略: (1)利用正弦定理實(shí)現(xiàn)“邊化角”; (2)利用余弦定理實(shí)現(xiàn)“角化邊”; 2.求三角形周長(zhǎng)的最值也是解三角形中一種常見類型的問題,主要方法有兩類:
23、 (1)找到邊與邊的關(guān)系,利用余弦定理列等式,結(jié)合基本不等式求最值; (2)利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角為自變量的三角函數(shù),利用函數(shù)思想的求最值. 18.的內(nèi)角、、所對(duì)的邊分別為、、,面積為.設(shè). (1)求角的大??; (2)設(shè),求的取值范圍. 【答案】(1);(2). 【分析】 (1)利用余弦定理結(jié)合三角形的面積公式可求得的值,結(jié)合可求得角的值; (2)由正弦定理得出,,利用三角形的內(nèi)角和定理以及三角恒等變換思想得出,求出角的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得的取值范圍. 【詳解】 (1)由余弦定理得, 由,可得,所以. 因?yàn)?,所以? (2)由正弦定理得,,,
24、 因此 . 因?yàn)?,所以,所以,所以? 所以. 因此,的取值范圍是. 【點(diǎn)睛】 方法點(diǎn)睛:解三角形的基本策略: (1)利用正弦定理實(shí)現(xiàn)“邊化角”; (2)利用余弦定理實(shí)現(xiàn)“角化邊”. 求三角形有關(guān)代數(shù)式的取值范圍也是一種常見的類型,主要方法有兩類: (1)找到邊與邊之間的關(guān)系,利用基本不等式來求解; (2)利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角的三角函數(shù),利用函數(shù)思想求解. 19.從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并加以解答.已知的內(nèi)角,,的對(duì)邊分別為,,,且______,求的最大值.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分. 【答案】答案見解析 【分
25、析】 分別選①②③,由正弦定理和三角恒等變換的公式,求得,進(jìn)而得到,化簡(jiǎn),結(jié)合三角函數(shù)的性質(zhì),即可求解. 【詳解】 若選①,因?yàn)椋? 由正弦定理得, 整理得,可得, 又由,則有, 又因?yàn)椋?,所? 所以 , 因?yàn)?,可得? 所以當(dāng)時(shí),有最大值. 若選②,因?yàn)椋? 由正弦定理知, 整理得,即. 又因?yàn)?,可得,所以,即? 所以, 所以 , 因?yàn)?,可得? 所以當(dāng)時(shí),有最大值. 若選③,因?yàn)椋? 由正弦定理知,∴. 由余弦定理知, 因?yàn)?,所以,所以? 所以 , 因?yàn)?,可得? 所以當(dāng)時(shí),有最大值. 【點(diǎn)睛】 解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪
26、個(gè)定理更合適,要抓住能夠利用某個(gè)定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理. 20.已知在中,. (1)求角的大??; (2)若與的內(nèi)角平分線交于點(diǎn),的外接圓半徑為4,求周長(zhǎng)的最大值. 【答案】(1);(2)最大值為. 【分析】 (1)先用三角形內(nèi)角和定理?誘導(dǎo)公式?同角三角函數(shù)的基本關(guān)系化簡(jiǎn)已知等式,得到關(guān)于的方程,解方程可得的值,再結(jié)合角的范圍即可求出角; (2)由的外接圓半徑為4,利用正弦定理求出,根據(jù)三角形內(nèi)角和為,,得,則,可求出,設(shè),在中根據(jù)正弦定理將邊用表示,可得周長(zhǎng)的表達(dá)式,根據(jù)
27、三角函數(shù)的有界性可求得周長(zhǎng)的最大值. 【詳解】 解:(1)∵,∴,∴, 又, ∴, 即,解得. 又,∴. (2)∵的外接圓半徑為4,所以由正弦定理得 ∵,∴,, 又與的內(nèi)角平分線交于點(diǎn),∴. ∴ 設(shè),則,, 在中,由正弦定理得, 得,, ∴的周長(zhǎng)為. ∵,∴, ∴當(dāng),即時(shí),的周長(zhǎng)取得最大值,為, ∴周長(zhǎng)的最大值為. 【點(diǎn)睛】 結(jié)論點(diǎn)睛:解決解三角形問題的關(guān)鍵是靈活運(yùn)用正弦定理?余弦定理求邊和角,如果給出的等式中既有邊又有角,則可考慮利用正弦定理將已知等式轉(zhuǎn)化為關(guān)于邊或關(guān)于角的關(guān)系式進(jìn)行求解,若給出的等式是關(guān)于邊的二次式,則一般需利用余弦定理求解. 21.
28、已知在銳角中,角,,的對(duì)邊分別為,,,,. (1)求外接圓的半徑; (2)求周長(zhǎng)的取值范圍. 【答案】(1)2;(2). 【分析】 (1)由,利用正弦定理、和差公式可得,再利用正弦定理即可得出外接圓的半徑. (2)由,可得:,.可得.,利用和差公式、三角函數(shù)的單調(diào)性即可得出. 【詳解】 (1)因?yàn)? 所以 所以 所以 又因?yàn)? 所以 又 所以 又因?yàn)? 所以 又因?yàn)? 所以外接圓半徑 (2)據(jù)題設(shè)知, 所以, 又, 所以 因?yàn)槭卿J角三角形,且 所以 解得 所以 所以 即周長(zhǎng)的取值范圍是 【點(diǎn)睛】 解三角形的基本策略:一是利用正弦定理
29、實(shí)現(xiàn)“邊化角”,二是利用余弦定理實(shí)現(xiàn)“角化邊”;求三角形面積的最大值也是一種常見類型,主要方法有兩類,一是找到邊之間的關(guān)系,利用基本不等式求最值,二是利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角的函數(shù),利用函數(shù)思想求最值. 22.已知a,b,c是的內(nèi)角A,B,C的對(duì)邊,且的面積. (1)記,,若. (i)求角C, (ii)求的值; (2)求的取值范圍. 【答案】(1);或.(2) 【分析】 (1)(i)由,利用向量共線的坐標(biāo)運(yùn)算可得,再利用正弦定理邊化角得,借助 ,即可求得角C (ii)由,得,由余弦定理得: ,兩邊同除以可得,,解方程即可求解. (2)由,得,由余弦定理得: ,兩邊同除
30、以可得,,分離取值范圍已知的量: 由,則,即,解不等式即可得到答案. 【詳解】 (1)(i),,, ,即 利用正弦定理得:, 即,化簡(jiǎn)得 又,, 又, (ii)由,得,即,化簡(jiǎn)得 由余弦定理得:, 即,兩邊同除以可得, 令,得,解得 所以的值為或 (2)由,得,即 由余弦定理得:, 即,兩邊同除以可得, 令,得, 即 由,則,即, 解不等式得: 所以的取值范圍為: 【點(diǎn)睛】 方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用: (1)若式子含有的齊次式,優(yōu)先考
31、慮正弦定理,“角化邊”; (2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”; (3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”; (4)代數(shù)變形或者三角恒等變換前置; (5)含有面積公式的問題,要考慮結(jié)合余弦定理使用; (6)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到. 23.近年來國(guó)家大力加強(qiáng)生態(tài)環(huán)境保護(hù),某山區(qū)違建拆除以后,當(dāng)?shù)卣疄榱司窘逃笕?,決定在一處空地上建立一個(gè)如圖所示的綜合教育基地,其中ABC為正三角形,在ACD中,DC=2百米,DA=1百米,建成后BCD將作為人們觀看警示教育區(qū)域,ABD作為環(huán)境保護(hù)知識(shí)普及學(xué)習(xí)區(qū)域. (1)當(dāng)∠ADC=時(shí),求
32、環(huán)境保護(hù)知識(shí)普及學(xué)習(xí)區(qū)域的面積(單位:百米); (2)設(shè)∠ADC=θ,則當(dāng)θ多大時(shí),觀看警示教育區(qū)域的面積(單位:百米)最大. 【答案】(1)百米2;(2). 【分析】 (1)求出百米,百米,即得環(huán)境保護(hù)知識(shí)普及學(xué)習(xí)區(qū)域的面積; (2)設(shè),求出,再求出,即得解. 【詳解】 (1)在中,, 所以百米, 所以,所以,從而, 因?yàn)闉檎切?,所以百米? 百米2, (2)設(shè),則在中,由正弦定理得, 由余弦定理得, 因?yàn)闉檎切?,所以,又百米? 所以 , 所以當(dāng)即時(shí),取得最大值百米2, 綜上可得,當(dāng)觀看警示教育區(qū)域的面積最大. 【點(diǎn)睛】 關(guān)鍵點(diǎn)睛:解答本題的關(guān)鍵
33、是求出的函數(shù)解析式,其中用到了正弦定理和余弦定理求三角函數(shù).遇到解三角形的問題,要熟練運(yùn)用正弦定理余弦定理完成解題目標(biāo). 24.在中,角,,的對(duì)邊分別為,,,為的面積,滿足. (1)求角的大?。? (2)若,求的取值范圍. 【答案】(1);(2). 【分析】 (1)利用三角形的面積公式以及余弦定理即可求解. (2)利用正弦定理可得,再根據(jù)兩角差的正弦公式以及輔助角公式即可求解. 【詳解】 (1)由三角形面積公式得: (2)在中,由正弦定理得,又, 所以,, 故, 因?yàn)楣?,所以,? 故的取值范圍是. 25.在中,角所過的邊分別為,且,. (1)求面積的最大值;
34、 (2)若為銳角三角形,求周長(zhǎng)的取值范圍. 【答案】(1);(2). 【分析】 (1)根據(jù)條件利用余弦定理求出,再由基本不等式求出,即可求出面積最大值; (2)由正弦定理可得,根據(jù)三角函數(shù)的性質(zhì)可求出取值范圍. 【詳解】 解(1), , ,即,, , 當(dāng)且僅當(dāng)時(shí)等號(hào)成立,, ,即,; (3)由正弦定理可知, , 為銳角三角形,且, , ,即的取值范圍為. 【點(diǎn)睛】 關(guān)鍵點(diǎn)睛:第一問關(guān)鍵是利用基本不等式求出;第二問需要利用正弦定理化邊為角得到,再結(jié)合三角函數(shù)性質(zhì)求解. 26.設(shè)函數(shù). (1)求的最小正周期和值域; (2)在銳角中,設(shè)角,,的
35、對(duì)邊長(zhǎng)分別為,,.若,,求周長(zhǎng)的取值范圍. 【答案】(1);;(2). 【分析】 (1)根據(jù)二倍角公式和兩角和的余弦公式化簡(jiǎn)得,再根據(jù)周期公式可得周期,根據(jù)余弦函數(shù)的值域可得值域; (2)由,得,根據(jù)正弦定理將用表示,用兩角和的正弦公式將周長(zhǎng)表示為的三角函數(shù),利用銳角三角形求出的范圍,利用三角函數(shù)的圖象求出周長(zhǎng)的取值范圍. 【詳解】 (1)因?yàn)? 所以的最小正周期為. 因?yàn)椋? 所以. 所以,函數(shù)的值域?yàn)? (2)由,得. 因?yàn)闉殇J角,所以,所以,即. 因?yàn)?,所? 由正弦定理,得,, 所以 . 因?yàn)闉殇J角三角形,所以,, 即,解得. 所以,所以,即.
36、 所以周長(zhǎng)的取值范圍為區(qū)間. 【點(diǎn)睛】 關(guān)鍵點(diǎn)點(diǎn)睛:利用正弦定理將邊化角,利用三角函數(shù)的圖象求取值范圍是解題關(guān)鍵,屬于中檔題. 27.設(shè)的內(nèi)角的對(duì)邊分別為,已知且,. (1)求角; (2)若,求周長(zhǎng)的取值范圍. 【答案】(1);(2). 【分析】 (1)由向量垂直有,結(jié)合其坐標(biāo)表示可得,應(yīng)用余弦定理即可求角; (2)應(yīng)用正弦定理有,進(jìn)而得到,根據(jù)三角形內(nèi)角和性質(zhì)及周長(zhǎng)公式即可求周長(zhǎng)的取值范圍. 【詳解】 (1)∵, ∴ ∴,即, ∴. ∵B∈(0,π), ∴. (2)由正弦定理,得,又因?yàn)? 所以 又因?yàn)?,所? 所以 所以△ABC周長(zhǎng)的取值范圍
37、【點(diǎn)睛】 關(guān)鍵點(diǎn)點(diǎn)睛:本題綜合考查了向量垂直的坐標(biāo)表示、正余弦定理的應(yīng)用,注意觀察正弦定理中邊角互化、余弦公式形式的辨析,以及應(yīng)用三角恒等變換化簡(jiǎn)三角函數(shù)式并結(jié)合三角形的內(nèi)角性質(zhì)求周長(zhǎng)范圍. 28.在中,,,分別是角,,所對(duì)的邊,已知,,且. (1)求角的大??; (2)求周長(zhǎng)的取值范圍. 【答案】(1);(2) 【分析】 (1)由題意得出,從而求得的值; (1)由正弦定理表示出,,利用三角恒等變換與三角形內(nèi)角和定理,即可求出的取值范圍. 【詳解】 解:(1)由,,且, 得, ; 又, ; (2)由(1)知,,則, ,,,; , 又,, ,, , 周長(zhǎng)的取值范圍. 【點(diǎn)睛】 解三角形的基本策略:一是利用正弦定理實(shí)現(xiàn)“邊化角”,二是利用余弦定理實(shí)現(xiàn)“角化邊”;求三角形面積的最大值也是一種常見類型,主要方法有兩類,一是找到邊之間的關(guān)系,利用基本不等式求最值,二是利用正弦定理,轉(zhuǎn)化為關(guān)于某個(gè)角的函數(shù),利用函數(shù)思想求最值.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案