金版教程高考數(shù)學文二輪復習講義:第二編 專題整合突破 專題一集合、常用邏輯用語 第三講 不等式及線性規(guī)劃 Word版含解析
《金版教程高考數(shù)學文二輪復習講義:第二編 專題整合突破 專題一集合、常用邏輯用語 第三講 不等式及線性規(guī)劃 Word版含解析》由會員分享,可在線閱讀,更多相關《金版教程高考數(shù)學文二輪復習講義:第二編 專題整合突破 專題一集合、常用邏輯用語 第三講 不等式及線性規(guī)劃 Word版含解析(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 高考數(shù)學精品復習資料 2019.5 第三講 不等式及線性規(guī)劃 必記公式] 1.a(chǎn)2+b2≥2ab(取等號的條件是當且僅當a=b). 2.a(chǎn)b≤2(a,b∈R). 3. ≥≥≥(a>0,b>0). 4.2(a2+b2)≥(a+b)2(a,b∈R,當a=b時等號成立). 重要結論] 1.不等式的四個性質 注意不等式的乘法、乘方與開方對符號的要求,如 (1)a>b,c>0?ac>bc,a>b,c<0?ac<bc. (2)a>b>0,c>
2、d>0?ac>bd. (3)a>b>0?an>bn(n∈N,n≥1). (4)a>b>0?>(n∈N,n≥2). 2.四類不等式的解法 (1)一元二次不等式的解法 先化為一般形式ax2+bx+c>0(a≠0),再求相應一元二次方程ax2+bx+c=0(a≠0)的根,最后根據(jù)相應二次函數(shù)圖象與x軸的位置關系,確定一元二次不等式的解集. (2)簡單分式不等式的解法 >0(<0)?f(x)g(x)>0(<0); ≥0(≤0)?f(x)g(x)≥0(≤0)且g(x)≠0. (3)簡單指數(shù)不等式的解法 當a
3、>1時,af(x)>ag(x)?f(x)>g(x); 當0<a<1時,af(x)>ag(x)?f(x)<g(x). (4)簡單對數(shù)不等式的解法 當a>1時,logaf(x)>logag(x)?f(x)>g(x)且f(x)>0,g(x)>0; 當0<a<1時,logaf(x)>logag(x)?f(x)<g(x)且f(x)>0,g(x)>0. 3.判斷二元一次不等式表示的平面區(qū)域的方法 在直線Ax+By+C=0的某一側任取一點(x0,y0),通過Ax0+By0+C的符號來判斷A
4、x+By+C>0(或Ax+By+C<0)所表示的區(qū)域. 失分警示] 1.忽略限制條件致誤:應用不等式的性質時,要注意限制條件. 2.注意符號成立的條件:用基本不等式求最值時,若連續(xù)進行放縮,只有各等號成立的條件保持一致時,結論的等號才成立. 3.忽略基本不等式求最值的條件致誤:利用基本不等式求最值時要注意“一正、二定、三相等”,三個條件缺一不可. 4.解分式不等式時,直接把分母乘到另一邊,不注意分母的取值范圍致誤. 5.線性目標函數(shù)的斜率與可行域的邊界斜率大小分不清. 6.y=-x+中截距符號弄反,導致平移時上下方向錯誤. 考點 不等式的性質及解法 典例
5、示法 典例1 (1)20xx·合肥質檢]函數(shù)f(x)=-x2+3x+a,g(x)=2x-x2,若f(g(x))≥0對x∈0,1]恒成立,則實數(shù)a的取值范圍是( ) A.-e,+∞) B.-ln 2,+∞) C.-2,+∞) D. 解析] 本題主要考查二次函數(shù)與指數(shù)函數(shù)的性質.如圖所示,在同一坐標系中畫出y=x2+1,y=2x,y=x2+的圖象,由圖象可知,在0,1]上,x2+1≤2x<x2+恒成立,即1≤2x-x2<,當且僅當x=0或x=1時等號成立,∴1≤g(x)<,∴f(g(x))≥0?f(1)≥0?-1+3+a≥0?a≥-2,即實數(shù)a的取值
6、范圍是-2,+∞),故選C. 答案] C (2)20xx·山東高考]已知實數(shù)x,y滿足ax<ay(0<a<1),則下列關系式恒成立的是( ) A.> B.ln (x2+1)>ln (y2+1) C.sinx>siny D.x3>y3 解析] 因為0<a<1,ax<ay,所以x>y.對于選項A,取x=2,y=1,則<,顯然A錯誤;對于選項B,取x=-1,y=-2,則ln (x2+1)<ln (y2+1),顯然B錯誤;對于選項C,取x=π,y=,則sin>sinπ,顯然C錯誤;對于
7、選項D,若x>y,則x3>y3一定成立,故選D. 答案] D 求解不等式的方法 (1)對于一元二次不等式,應先化為一般形式ax2+bx+c>0(a≠0),再求相應一元二次方程ax2+bx+c=0(a≠0)的根,最后根據(jù)相應二次函數(shù)圖象與x軸的位置關系,確定一元二次不等式的解集. (2)解簡單的分式、指數(shù)、對數(shù)不等式的基本思想是把它們等價轉化為整式不等式(一般為一元二次不等式)求解. (3)解決含參數(shù)不等式的難點在于對參數(shù)的恰當分類,關鍵是找到對參數(shù)進行討論的原因,確定好分類標準,有理有據(jù)、層次清楚地求解. 針對訓練 1.20xx·石家莊質檢(二
8、)]函數(shù)f(x)= 若f(x0)≤,則x0的取值范圍是( ) A. B.∪ C.∪ D.∪ 答案 C 解析?、佼?≤x0<1時,2x0≤,x0≤log2, ∴0≤x0≤log2. ②當1≤x0≤2時,4-2x0≤,x0≥, ∴≤x0≤2,故選C. 2.20xx·江蘇高考]已知函數(shù)f(x)=x2+mx-1,若對于任意x∈m,m+1],都有f(x)<0成立,則實數(shù)m的取值范圍是________. 答案 解析 要滿足f(x)=x2+mx-1<0對于任意x∈m,m+1]恒成立, 只需即 解得-<m<0. 考點 基本不等式的應用
9、 典例示法 題型1 利用基本不等式求最值 典例2 20xx·湖南高考]若實數(shù)a,b滿足+=,則ab的最小值為( ) A. B.2 C.2 D.4 解析] 解法一:由已知得+==,且a>0,b>0,∴ab=b+2a≥2,當且僅當b=2a時成立,∴ab≥2. 解法二:由題設易知a>0,b>0,∴=+≥2,即ab≥2,當且僅當時,取等號,選C. 答案] C 題型2 基本不等式的綜合應用 典例3 已知點A(0,-1),B(3,0),C(1,2),平面區(qū)域P是由所有滿足=λ+μ(2<λ≤m,2<μ≤n)的點M組成的區(qū)域,
10、若區(qū)域P的面積為16,則m+n的最小值為________. 解析] 由題意知=(3,1),=(1,3),=(-2,2), 所以cosA===,sinA=.如圖,延長AB至點G,延長AC至點E,使=m,=n,且=2,=2,作DK∥AB,EQ∥AB,F(xiàn)T∥AC,GQ∥AC,則四邊形AFHD、四邊形AGQE、四邊形HKQT都是平行四邊形.由題意可知點M組成的區(qū)域P為圖中的陰影部分,即四邊形HKQT及其內部,所以四邊形HKQT的面積為|HK|·|HT|sinA=(m-2)·(n-2)·=16,即(m-2)·(n-2)=2,mn-2m-2n+2=0,即2(
11、m+n)=mn+2,因為2(m+n)=mn+2≤2+2,所以(m+n)2-8(m+n)+8≥0,所以m+n≥4+2或m+n≤4-2(舍),即m+n的最小值是4+2,此時m=n=2+. 答案] 4+2 利用基本不等式解題應關注三方面 (1)利用基本不等式求最值的注意點 ①在運用基本不等式求最值時,必須保證“一正,二定,三相等”,湊出定值是關鍵. ②若兩次連用基本不等式,要注意等號的取得條件的一致性,否則就會出錯. (2)求條件最值問題的兩種方法 一是借助條件轉化為所學過的函數(shù)(如一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)),借助于函數(shù)單調性求最值;二是可考慮通過變形直接利用基本不等
12、式解決. (3)結構調整與應用基本不等式 基本不等式在解題時一般不能直接應用,而是需要根據(jù) 已知條件和基本不等式的“需求”尋找“結合點”,即把研究對象化成適用基本不等式的形式,常見的轉化方法有 ①x+=x-a++a(x>a). ②若+=1,則mx+ny=(mx+ny)×1=(mx+ny)·≥ma+nb+2(字母均為正數(shù)). ③分式函數(shù)求最值,通常直接將分子配湊后將式子分開或將分母換元后將式子分開再利用不等式求最值.即化為y=m+\f(A,g(x))+Bg(x)(A>0,B>0),g(x)恒正或恒負的形式,然后運用基本不等式來求最值. 考點
13、 簡單的線性規(guī)劃問題 典例示法 題型1 知約束條件求目標函數(shù)最值 典例4 20xx·天津高考]設變量x,y滿足約束條件則目標函數(shù)z=2x+5y的最小值為( ) A.-4 B.6 C.10 D.17 解析] 解法一:如圖, 已知約束條件所表示的平面區(qū)域為圖中所示的三角形區(qū)域ABC(包含邊界),其中A(0,2),B(3,0),C(1,3).根據(jù)目標函數(shù)的幾何意義,可知當直線y=-x+過點B(3,0)時,z取得最小值2×3+5×0=6. 解法二:由題意知,約束條件所表示的平面區(qū)域的頂點分別為A(0,2),B(3,0),C(1,3).將
14、A,B,C三點的坐標分別代入z=2x+5y,得z=10,6,17,故z的最小值為6. 答案] B 題型2 知最值求參數(shù) 典例5 20xx·山東高考]已知x,y滿足約束條件若z=ax+y的最大值為4,則a=( ) A.3 B.2 C.-2 D.-3 解析] 畫出不等式組所表示的可行域如圖中陰影部分所示,因為目標函數(shù)z=ax+y的最大值為4,即目標函數(shù)對應直線與可行域有公共點時,在y軸上的截距的最大值為4,作出過點D(0,4)的直線,由圖可知,目標函數(shù)在點B(2,0)處取得最大值,故有a×2+0=4,解得a=2.故選B. 答案] B 解決線性
15、規(guī)劃問題應關注三方面 (1)首先要找到可行域,再注意目標函數(shù)所表示的幾何意義,找到目標函數(shù)達到最值時可行域的頂點(或邊界上的點),但要注意作圖一定要準確,整點問題要驗證解決. (2)畫可行域時應注意區(qū)域是否包含邊界. (3)對目標函數(shù)z=Ax+By中B的符號,一定要注意B的正負與z的最值的對應,要結合圖形分析. 提醒:目標函數(shù)是線性時,目標函數(shù)的幾何意義與直線的截距有關;若目標函數(shù)形如z=,可考慮(x,y)與(a,b)兩點連線的斜率;若目標函數(shù)形如z=(x-a)2+(y-b)2,可考慮(x,y)與(a,b)兩點距離的平方. 全國卷高考真題調研] 1.20xx·全
16、國卷Ⅰ]若x,y滿足約束條件則的最大值為________. 答案 3 解析 作出可行域如圖中陰影部分所示, 由可行域知,在點A(1,3)處,取得最大值3. 2.20xx·全國卷Ⅰ]某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時.生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________元.
17、答案 216000 解析 由題意,設產(chǎn)品A生產(chǎn)x件,產(chǎn)品B生產(chǎn)y件,利潤z=2100x+900y,線性約束條件為 作出不等式組表示的平面區(qū)域如圖中陰影部分所示,又由x∈N,y∈N,可知取得最大值時的最優(yōu)解為(60,100),所以zmax=2100×60+900×100=216000(元). 其它省市高考題借鑒] 3.20xx·山東高考]若變量x,y滿足則x2+y2的最大值是( ) A.4 B.9 C.10 D.12 答案 C 解析 作出不等式組所表示的平面區(qū)域如圖中陰影部分所示,設P(x,y)為平面區(qū)域內任意一點,則x2+y2表示
18、|OP|2.顯然,當點P與點A重合時,|OP|2,即x2+y2取得最大值.由 解得故A(3,-1).所以x2+y2的最大值為32+(-1)2=10.故選C. 4.20xx·陜西高考]設f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),則下列關系式中正確的是( ) A.q=r<p B.p=r<q C.q=r>p D.p=r>q 答案 B 解析 ∵0<a<b,∴>,又f(x)=ln x在(0,+∞)上單調遞增,故f()<f,即q>p,∵r=(f(a)+f(b))=(ln
19、 a+ln b)=ln=f=p,∴p=r<q.故選B. 5.20xx·四川高考]若a>b>0,c<d<0,則一定有( ) A.> B.< C.> D.< 答案 D 解析 解法一:c<d<0?cd>0?<<0?<<0??>?<. 解法二:依題意取a=2,b=1,c=-2,d=-1,代入驗證得A、B、C均錯,只有D正確. 6.20xx·上海高考]若實數(shù)x,y滿足xy=1,則x2+2y2的最小值為________. 答案 2 解析 ∵x2+2y2
20、≥2=2xy=2,當且僅當x=y(tǒng)時取“=”,∴x2+2y2的最小值為2. 一、選擇題 1.20xx·青海西寧二模]已知a,b,c∈R,那么下列命題中正確的是( ) A.若a>b,則ac2>bc2 B.若>,則a>b C.若a3>b3且ab<0,則> D.若a2>b2且ab>0,則< 答案 C 解析 當c=0時,可知A不正確;當c<0時,可知B不正確;對于C,由a3>b3且ab<0知a>0且b<0,所以>成立,C正確;當a<0且b<0時,可知D不正確.
21、 2.20xx·北京平谷統(tǒng)考]已知a,b,c,d均為實數(shù),有下列命題: ①若ab>0,bc-ad>0,則->0; ②若ab>0,->0,則bc-ad>0; ③若bc-ad>0,->0,則ab>0. 其中正確命題的個數(shù)是( ) A.0 B.1 C.2 D.3 答案 D 解析 對于①,∵ab>0,bc-ad>0,∴-=>0,∴①正確;對于②,∵ab>0,又->0,即>0,∴bc-ad>0,∴②正確;對于③,∵bc-ad>0,又->0,即>0,∴ab
22、>0,∴③正確.故選D. 3.20xx·浙江金華期中]若對任意的x∈0,1],不等式1-kx≤≤1-lx恒成立,則一定有( ) A.k≤0,l≥ B.k≤0,l≤ C.k≥,l≤ D.k≥,l≤ 答案 D 解析 當k=-1且x∈0,1]時,1-kx=1+x∈1,2],∈,不等式1-kx≤不恒成立,可排除A、B;當k=且x∈0,1]時,1-kx=1-x∈,∈,不等式1-kx≤不恒成立,排除C,故選D. 4.已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是( ) A.(-∞,0] B.(-∞,1] C.-2,1] D.-2,0] 答案
23、D 解析 由題意作出y=|f(x)|的圖象: 當a>0時,y=ax與y=ln (x+1)的圖象在x>0時必有交點,所以a≤0.當x≥0時,|f(x)|≥ax顯然成立;當x<0時,|f(x)|=x2-2x,|f(x)|≥ax恒成立?a≥x-2恒成立,又x-2<-2,∴a≥-2.∴-2≤a≤0,故選D. 5.已知函數(shù)f(x)=則不等式f(x)≥x2的解集為( ) A.-1,1] B.-2,2] C.-2,1] D.-1,2] 答案 A 解析 解法一:當x≤0時,x+2≥x2,∴-1≤x≤0,① 當x>0時,-x+2≥x2,∴0<
24、x≤1.② 由①②得原不等式的解集為{x|-1≤x≤1}. 解法二:作出函數(shù)y=f(x)和函數(shù)y=x2的圖象,如圖,由圖知f(x)≥x2的解集為-1,1]. 6.已知a>0,x,y滿足約束條件若z=2x+y的最小值為1,則a=( ) A. B. C.1 D.2 答案 B 解析 畫出可行域,如圖所示, 由得A(1,-2a),則直線y=z-2x過點A(1,-2a)時,z=2x+y取最小值1, 故2×1-2a=1,解得a=. 7.20xx·陜西高考]某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限
25、額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( ) 甲 乙 原料限額 A(噸) 3 2 12 B(噸) 1 2 8 A.12萬元 B.16萬元 C.17萬元 D.18萬元 答案 D 解析 設該企業(yè)每天生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,每天獲得的利潤為z萬元,則有z=3x+4y,由題意得x,y滿足:不等式組表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)為頂點的四邊形及其內部.根據(jù)線性規(guī)劃的有關知識,知當直線3x+4y-z=0過點B(2,3)時,z取最大值18,故該企業(yè)每天可獲得最大利潤為
26、18萬元. 8.20xx·山東濰坊模擬]一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的均值為2,+的最小值為( ) A. B. C. D. 答案 D 解析 由題意得3a+2b=2, +=×= ≥3+ +=3+2+=, 當且僅當a=,b=時取等號.故選D. 9.20xx·蘭州雙基過關]已知AC、BD為圓O:x2+y2=4的兩條互相垂直的弦,且垂足為M(1,),則四邊形ABCD 面積的最大值為( ) A.5 B.10 C.15 D.20 答案 A
27、解析 如圖,作OP⊥AC于P,OQ⊥BD于Q,則OP2+OQ2=OM2=3,∴AC2+BD2=4(4-OP2)+4(4-OQ2)=20. 又AC2+BD2≥2AC·BD,則AC·BD≤10,∴S四邊形ABCD=AC·BD≤×10=5,當且僅當AC=BD=時等號成立, ∴四邊形ABCD面積的最大值為5. 10.20xx·山東菏澤一模]已知直線ax+by+c-1=0(b,c>0)經(jīng)過圓x2+y2-2y-5=0的圓心,則+的最小值是( ) A.9 B.8 C.4 D.2 答案 A 解析 圓x2+y2-2y-5=0化成
28、標準方程,得 x2+(y-1)2=6, 所以圓心為C(0,1). 因為直線ax+by+c-1=0經(jīng)過圓心C,所以a×0+b×1+c-1=0,即b+c=1. 因此+=(b+c)=++5. 因為b,c>0, 所以+≥2 =4. 當且僅當=時等號成立. 由此可得b=2c,且b+c=1,即b=,c=時,+取得最小值9. 二、填空題 11.已知f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)=x2-4x.那么,不等式f(x+2)<5的解集是________. 答案 (-7,3) 解析 ∵f(x)是偶函數(shù),∴f(x)=f(|x|). 又x≥0時,
29、f(x)=x2-4x, ∴不等式f(x+2)<5?f(|x+2|)<5 ?|x+2|2-4|x+2|<5?(|x+2|-5)(|x+2|+1)<0?|x+2|-5<0?|x+2|<5?-5<x+2<5?-7<x<3. 故解集為(-7,3). 12.20xx·遼寧五校聯(lián)考]設實數(shù)x,y滿足約束條件若目標函數(shù)z=ax+by(a>0,b>0)的最大值為10,則a2+b2的最小值為________. 答案 解析 因為a>0,b>0,所以由可行域得,當目標函數(shù)z=ax+by過點(4,6)時取最大值
30、,則4a+6b=10.a2+b2的幾何意義是直線4a+6b=10上任意一點到點(0,0)的距離的平方,那么最小值是點(0,0)到直線4a+6b=10距離的平方,即a2+b2的最小值是. 13.20xx·遼寧沈陽質檢]若直線l:+=1(a>0,b>0)經(jīng)過點(1,2),則直線l在x軸和y軸上的截距之和的最小值是________. 答案 3+2 解析 直線l在x軸上的截距為a,在y軸上的截距為b.求直線l在x軸和y軸上的截距之和的最小值即求a+b的最小值.由直線l經(jīng)過點(1,2)得+=1.于是a+b=(a+b)×1=(a+b)×=3++,因為+≥2 =2,所以a+b≥3+2. 14.20xx·廣東實驗中學模擬]已知函數(shù)f(x)=若對任意的x∈R,不等式f(x)≤m2-m恒成立,則實數(shù)m的取值范圍是________. 答案 ∪1,+∞) 解析 對于函數(shù)f(x)= 當x≤1時,f(x)=-2+≤; 當x>1時,f(x)=logx<0. 則函數(shù)f(x)的最大值為. 則要使不等式f(x)≤m2-m恒成立,則m2-m≥恒成立,即m≤-或m≥1.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。