《高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:第三部分 題型指導考前提分 題型練10 Word版含答案》由會員分享,可在線閱讀,更多相關《高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:第三部分 題型指導考前提分 題型練10 Word版含答案(8頁珍藏版)》請在裝配圖網上搜索。
1、
題型練10 大題綜合練(二)
1.設數(shù)列{an}(n=1,2,3,…)的前n項和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列1an的前n項和為Tn,求使得|Tn-1|<11000成立的n的最小值.
2.某工廠生產A,B兩種產品,其質量按測試指標劃分,指標大于或等于88為合格品,小于88為次品.現(xiàn)隨機抽取這兩種產品各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標
[80,84)
[84,88)
[88,92)
[92,96)
[96,100]
產品
2、A
6
14
42
31
7
產品B
8
17
40
30
5
(1)試分別估計產品A,B為合格品的概率;
(2)生產1件產品A,若是合格品則盈利45元,若是次品則虧損10元;生產1件產品B,若是合格品則盈利60元,若是次品則虧損15元.在(1)的前提下,①X為生產1件產品A和1件產品B所得的總利潤,求隨機變量X的分布列和數(shù)學期望;②求生產5件產品B所得利潤不少于150元的概率.
3.
如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90,BE=EF=FC=1,BC=2,A
3、C=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
4.設橢圓E:x2a2+y2b2=1(a>b>0)過M(2,2),N(6,1)兩點,O為坐標原點.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OA⊥OB?若存在,寫出該圓的方程,并求|AB|的取值范圍:若不存在,請說明理由.
5.已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)y=f(x)的
4、圖象在點(2,f(2))處的切線的傾斜角為45,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2f(x)+m2在區(qū)間(t,3)上總不是單調函數(shù),求m的取值范圍;
(3)求證:ln22ln33ln44…lnnn<1n(n≥2,n∈N*).
參考答案
題型練10 大題綜合練(二)
1.解(1)由已知Sn=2an-a1,有
an=Sn-Sn-1=2an-2an-1(n≥2),
即an=2an-1(n≥2).
從而a2=2a1,a3=2a2=4a1.
又因為a1,a2+1,a3成等差數(shù)列,
即a1+a3=2(a2+1).
5、
所以a1+4a1=2(2a1+1),解得a1=2.
所以,數(shù)列{an}是首項為2,公比為2的等比數(shù)列.
故an=2n.
(2)由(1)得1an=12n.
所以Tn=12+122+…+12n=121-12n1-12=1-12n.
由|Tn-1|<11000,得1-12n-1<11000,
即2n>1000.
因為29=512<1000<1024=210,
所以n≥10.
于是,使|Tn-1|<11000成立的n的最小值為10.
2.解(1)由題意知,產品A為合格品的概率約為42+31+7100=45,產品B為合格品的概率約為40+30+5100=34.
(2)①隨機變量X
6、的所有可能取值為-25,30,50,105.
P(X=-25)=1-451-34=120;
P(X=30)=451-34=15;
P(X=50)=1-4534=320;
P(X=105)=4534=35.
所以隨機變量X的分布列為
X
-25
30
50
105
P
120
15
320
35
E(X)=(-25)120+3015+50320+10535=75.25.
②生產的5件產品B中,合格品為3,4,5件時,所得利潤不少于150元,記“生產5件產品B所得利潤不少于150元”為事件M,
則P(M)=C53343142+C5434414+C55345=
7、459512.
3.(1)證明延長AD,BE,CF相交于一點K,如圖所示.
因為平面BCFE⊥平面ABC,且AC⊥BC,
所以AC⊥平面BCK,因此BF⊥AC.
又因為EF∥BC,BE=EF=FC=1,BC=2,
所以△BCK為等邊三角形,且F為CK的中點,則BF⊥CK.
所以BF⊥平面ACFD.
(2)解法一過點F作FQ⊥AK于Q,連接BQ.
因為BF⊥平面ACK,所以BF⊥AK,則AK⊥平面BQF,所以BQ⊥AK.
所以∠BQF是二面角B-AD-F的平面角.
在Rt△ACK中,AC=3,CK=2,得FQ=31313.
在Rt△BQF中,FQ=31313,BF=3,
8、得cos∠BQF=34.
所以,二面角B-AD-F的平面角的余弦值為34.
解法二如圖,延長AD,BE,CF相交于一點K,則△BCK為等邊三角形.
取BC的中點O,則KO⊥BC,
又平面BCFE⊥平面ABC,
所以,KO⊥平面ABC.
以點O為原點,分別以射線OB,OK的方向為x,z的正方向,建立空間直角坐標系O-xyz.
由題意得B(1,0,0),C(-1,0,0),K(0,0,3),A(-1,-3,0),E12,0,32,F-12,0,32.
因此,AC=(0,3,0),AK=(1,3,3),AB=(2,3,0).
設平面ACK的法向量為m=(x1,y1,z1),平面
9、ABK的法向量為n=(x2,y2,z2).
由ACm=0,AKm=0得3y1=0,x1+3y1+3z1=0,取m=(3,0,-1);
由ABn=0,AKn=0得2x2+3y2=0,x2+3y2+3z2=0,取n=(3,-2,3).
于是,cos=mn|m||n|=34.
所以,二面角B-AD-F的平面角的余弦值為34.
4.解(1)將M,N的坐標代入橢圓E的方程,得
4a2+2b2=1,6a2+1b2=1,解得a2=8,b2=4.
所以橢圓E的方程為x28+y24=1.
(2)假設滿足題意的圓存在,其方程為x2+y2=R2,其中0
10、和橢圓E交于A(x1,y1),B(x2,y2)兩點,
當直線AB的斜率存在時,令直線AB的方程為y=kx+m, ①
將其代入橢圓E的方程并整理,得(2k2+1)x2+4kmx+2m2-8=0.
由根與系數(shù)的關系,得x1+x2=-4km2k2+1,x1x2=2m2-82k2+1. ②
因為OA⊥OB,所以x1x2+y1y2=0. ③
將y1=kx1+m,y2=kx2+m代入③,得
(1+k2)x1x2+km(x1+x2)+m2=0. ④
將②代入④,得m2=83(1+k2). ⑤
因為直線AB和圓相切,所以R=|m|1+k2,
將其代入⑤得R=263,所以存在圓x2+y2=83
11、滿足題意.
當切線AB的斜率不存在時,易得x12=x22=83,由橢圓E的方程得y12=y22=83,顯然OA⊥OB.
綜上所述,存在圓x2+y2=83滿足題意.
如圖,過原點O作OD⊥AB,垂足為D,則D為切點,設∠OAB=θ,則θ為銳角,
且|AD|=263tanθ,|BD|=263tanθ,
所以|AB|=263tanθ+1tanθ.
因為2≤|OA|≤22,所以22≤tanθ≤2.
令x=tanθ,易證:
當x∈22,1時,|AB|=263x+1x單調遞減;
當x∈[1,2]時,|AB|=263x+1x單調遞增.
所以463≤|AB|≤23.
5.(1)解當a
12、=-1時,f(x)=x-1x(x>0),由f(x)>0,得x∈(1,+∞);
由f(x)<0,得x∈(0,1),
∴函數(shù)f(x)的單調遞增區(qū)間為(1,+∞);單調遞減區(qū)間為(0,1).
(2)解∵f(x)=a(1-x)x(x>0),∴f(2)=-a2=1.
∴a=-2,f(x)=-2lnx+2x-3,g(x)=x3+m2+2x2-2x.∴g(x)=3x2+(m+4)x-2.
∵g(x)在區(qū)間(t,3)上不是單調函數(shù),且g(0)=-2,∴g(t)<0,g(3)>0.
由題意知,對于任意的t∈[1,2],g(t)<0恒成立,
∴g(1)<0,g(2)<0,g(3)>0,∴-373f(1),
即-lnx+x-1>0,
∴0