《高中數(shù)學(xué)《函數(shù)單調(diào)性》說(shuō)課稿Word版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《函數(shù)單調(diào)性》說(shuō)課稿Word版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《函數(shù)的單調(diào)性》說(shuō)課稿
一、教學(xué)分析
本節(jié)課是在學(xué)生學(xué)習(xí)了函數(shù)概念的基礎(chǔ)上所研究的函數(shù)的一個(gè)重要性質(zhì),常伴隨著函數(shù)的其它性質(zhì)出現(xiàn)。它既是在學(xué)生學(xué)過(guò)函數(shù)概念圖象、表示方法等知識(shí)后的延續(xù)和拓展,又是后面研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)等各類函數(shù)的單調(diào)性的基礎(chǔ),在整個(gè)高中數(shù)學(xué)中起著承上啟下的作用。研究函數(shù)單調(diào)性的過(guò)程體現(xiàn)了數(shù)學(xué)的“數(shù)形結(jié)合”和“從一般到特殊”的思想方法,這對(duì)培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、發(fā)展學(xué)生的思維能力,掌握數(shù)學(xué)的思想方法具有重大意義。
函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)
2、用
二、教學(xué)目標(biāo)
1、知識(shí)目標(biāo):
(1)建立增(減)函數(shù)的概念
通過(guò)觀察一些函數(shù)圖象的特征,形成增(減)函數(shù)的直觀認(rèn)識(shí). 再通過(guò)具函
數(shù)值的大小比較,認(rèn)識(shí)函數(shù)值隨自變量的增大(減?。┑囊?guī)律,由此得出增(減)函數(shù)單調(diào)性的定義 . 掌握用定義證明函數(shù)單調(diào)性的步驟。
(2)函數(shù)單調(diào)性的研究經(jīng)歷了從直觀到抽象,以圖識(shí)數(shù)的過(guò)程,在這個(gè)過(guò)程中,讓學(xué)生通過(guò)自主探究活動(dòng),體驗(yàn)數(shù)學(xué)概念的形成過(guò)程的真諦。
2、能力目標(biāo)
(1)通過(guò)已學(xué)過(guò)的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;
(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);
(3)能夠熟練應(yīng)用定義判斷與證明函數(shù)在某區(qū)間上的單調(diào)性
3、.
3、情感目標(biāo),
使學(xué)生感到學(xué)習(xí)函數(shù)單調(diào)性的必要性與重要性,增強(qiáng)學(xué)習(xí)函數(shù)的緊迫感.
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.
難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.
四、教學(xué)方法
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性。
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念。
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚㈨樌赝瓿蓵姹磉_(dá)。
五、學(xué)習(xí)方法
1、讓學(xué)生利用圖形直觀
4、啟迪思維,并通過(guò)正、反例的構(gòu)造,來(lái)完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
六、教學(xué)思路:
(一)創(chuàng)設(shè)情景,揭示課題
1. 觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
y
x
1
-1
1
-1
y
x
1
-1
1
-1
y
x
1
-1
1
-1
y
x
1
-1
1
-1
隨x的增大,y的值有什么變化?
能否看出函數(shù)的最大、最小值?
函數(shù)圖象是否具有某種對(duì)稱性?
2. 畫出下列函數(shù)
5、的圖象,觀察其變化規(guī)律:
(1)f(x) = x
y
x
1
-1
1
-1
從左至右圖象上升還是下降 ______?
在區(qū)間 ____________ 上,隨著x的增
大,f(x)的值隨著 ________ .
(2)f(x) = x2
在區(qū)間 ____________ 上,
f(x)的值隨著x的增大而 ________ .
在區(qū)間 ____________ 上,f(x)的值隨
著x的增大而 ________ .
3、從上面的觀察分析,能得出什么結(jié)論?
學(xué)生回答后教師歸納:從上面的觀察分析可以看出:不同的函數(shù),其圖象的變化趨勢(shì)不同,
6、同一函數(shù)在不同區(qū)間上變化趨勢(shì)也不同,函數(shù)圖象的這種變化規(guī)律就是函數(shù)性質(zhì)的反映,這就是我們今天所要研究的函數(shù)的一個(gè)重要性質(zhì)——函數(shù)的單調(diào)性(引出課題)。
(二)研探新知
1、y = x2的圖象在y軸右側(cè)是上升的,如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這種“上升”呢?
學(xué)生通過(guò)觀察、思考、討論,歸納得出:
函數(shù)y = x2在(0,+∞)上圖象是上升的,用函數(shù)解析式來(lái)描述就是:對(duì)于(0,+∞)上的任意的x1,x2,當(dāng)x1<x2時(shí),都有x12<x22 . 即函數(shù)值隨著自變量的增大而增大,具有這種性質(zhì)的函數(shù)叫增函數(shù)。
2.增函數(shù)
一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮,
如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)
7、的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)f(x)在區(qū)間D上是增函數(shù)(increasing function).
3、從函數(shù)圖象上可以看到,y= x2的圖象在y軸左側(cè)是下降的,類比增函數(shù)的定義,你能概括出減函數(shù)的定義嗎?
注意:
函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);
必須是對(duì)于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1<x2時(shí),總有f(x1)<f(x2) .
4.函數(shù)的單調(diào)性定義
如果函數(shù)y=f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么就說(shuō)函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間
8、D叫做y=f(x)的單調(diào)區(qū)間:
(三)質(zhì)疑答辯,發(fā)展思維。
1.根據(jù)函數(shù)圖象說(shuō)明函數(shù)的單調(diào)性.
例1 如圖是定義在區(qū)間[-5,5]上的函數(shù)y=f(x),根據(jù)圖象說(shuō)出函數(shù)的單
調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù)?
解:略
2.利用定義證明函數(shù)的單調(diào)性
例2 物理學(xué)中的玻意耳定律P=(k為正常數(shù))告訴我們,對(duì)于一定量的氣體,當(dāng)其體積V減少時(shí),壓強(qiáng)P將增大。試用函數(shù)的單調(diào)性證明之。
分析:按題意,只要證明函數(shù)P=在區(qū)間(0,+∞)上是減函數(shù)即可。
證明:略
3.證明函數(shù)單調(diào)性的方法步驟
利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性的
9、一般步驟:
① 任取x1,x2∈D,且x1<x2;
② 作差f(x1)-f(x2);
③變形(通常是因式分解和配方);
④定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));
⑤下結(jié)論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
鞏固練習(xí):
課本P32練習(xí)第1、2、3題;
證明函數(shù)在(1,+∞)上為增函數(shù).
(四)歸納小結(jié)
函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明.畫函數(shù)圖象通常借助計(jì)算機(jī),求函數(shù)的單調(diào)區(qū)間時(shí)必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:
取 值 → 作 差 → 變 形 → 定 號(hào) → 下結(jié)論
(五)設(shè)置問(wèn)題,留下懸念
1、教師提出下列問(wèn)題讓學(xué)生思考:
①通過(guò)增(減)函數(shù)概念的形成過(guò)程,你學(xué)習(xí)到了什么?
②增(減)函數(shù)的圖象有什么特點(diǎn)?如何根據(jù)圖象指出單調(diào)區(qū)間?
③怎樣用定義證明函數(shù)的單調(diào)性?
師生共同就上述問(wèn)題進(jìn)行討論、交流,發(fā)表自己的意見。
2、書面作業(yè):課本P39習(xí)題1.3題(A組)第1-4題。
友情提示:部分文檔來(lái)自網(wǎng)絡(luò)整理,供您參考!文檔可復(fù)制、編制,期待您的好評(píng)與關(guān)注!
5 / 5