《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí)專題10 計數(shù)原理、概率與統(tǒng)計 第67練 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí)專題10 計數(shù)原理、概率與統(tǒng)計 第67練 Word版含解析(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
訓(xùn)練目標(biāo)
(1)熟練掌握兩個計數(shù)原理并能靈活應(yīng)用;
(2)會應(yīng)用排列、組合的計算公式解決與排列組合有關(guān)的實際問題.
訓(xùn)練題型
(1)兩個計數(shù)原理的應(yīng)用;(2)排列問題;(3)組合問題;(4)排列與組合的綜合問題.
解題策略
(1)理解兩個計數(shù)原理的區(qū)別與聯(lián)系,掌握分類與分步的原則,正確把握分類標(biāo)準(zhǔn);(2)將常見的排列組合問題分成不同類型,并掌握各種類型的解法,弄清問題實質(zhì),做到融會貫通.
1.(20xx·無錫五校模擬)5人站
2、成一排,則甲不站在排頭的排法有________種.
2.6把椅子擺成一排,3人隨機(jī)就座,任何兩人不相鄰的坐法種數(shù)為________.
3.(20xx·南京模擬)數(shù)字1,2,3,4,5,6按如圖形式隨機(jī)排列,設(shè)第一行的數(shù)為N1,其中N2,N3分別表示第二,三行中的最大數(shù),則滿足N1<N2<N3的所有排列的個數(shù)是________.
4.(20xx·漢口一模)某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個空車位連在一起,則不同的停放方法有________種.
5.(20xx·西安二模)將4個顏色互不相同的球全部放入編號為1和2的兩
3、個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有________種.
6.(20xx·德陽診斷)學(xué)校計劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學(xué)、英語、理綜4科的專題講座,每科一節(jié)課,每節(jié)課至少有一科,且數(shù)學(xué)、理綜不安排在同一節(jié),則不同的安排方法共有________種.
7.(20xx·泉州質(zhì)檢)已知a,b∈{-1,0,1,2},則關(guān)于x的方程ax2+2x+b=0有實數(shù)解的有序數(shù)對(a,b)的個數(shù)為________.
8.(20xx·常州模擬)甲、乙、丙3人站到共有7級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區(qū)分站的位
4、置,則不同的站法種數(shù)是________.(用數(shù)字作答)
9.(20xx·衡水二模)已知數(shù)列{an}共有5項,a1=0,a5=2,且|ai+1-ai|=1,i=1,2,3,4,則滿足條件的數(shù)列{an}的個數(shù)為________.
10.某親子節(jié)目的熱播引發(fā)了一陣熱潮,某節(jié)目制作組選取了6戶家庭到4個村莊體驗農(nóng)村生活,要求將6戶家庭分成4組,其中2組各有2戶家庭,另外2組各有1戶家庭,則不同的分配方案的種數(shù)是________.
11.已知一個公園的形狀如圖所示,現(xiàn)有3種不同的植物要種在此公園的A,B,C,D,E這五個區(qū)域內(nèi),要求有公共邊界的兩塊相鄰區(qū)域種不同的植物,則不同的種法共有_
5、_______種.
12.從甲、乙等6名運動員中選出4名參加4×100米接力賽.如果甲、乙兩人都不跑第一棒,那么不同的參賽方法共有________種.
13.現(xiàn)有12種商品擺放在貨架上,擺成上層4件、下層8件的形式,現(xiàn)要從下層的8件中取2件調(diào)整到上層,若其他商品的相對順序不變,則不同的調(diào)整方法的種數(shù)是________.
14.公安部新修訂的《機(jī)動車登記規(guī)定》正式實施后,小型汽車的號牌已經(jīng)可以采用“自主編排”的方式進(jìn)行編排.某人欲選由A、B、C、D、E中的兩個不同字母,和1、2、3、4、5中的三個不同數(shù)字(三個數(shù)字都相鄰)組成一個號牌,則此人選擇號牌的不同的方法種數(shù)為__
6、______.
答案精析
1.96 2.24 3.240 4.24
5.10
解析 1號盒子可以放1個或2個球,2號盒子可以放2個或3個球,所以不同的放球方法有CC+CC=10(種).
6.30
解析 由于每科一節(jié)課,每節(jié)課至少有一科,必有兩科在同一節(jié)課,先從4科中任選2科看作一個整體,然后做3個元素的全排列,共CA種方法,再從中排除數(shù)學(xué)、理綜安排在同一節(jié)課的情形,共A種方法,故不同的安排方法種數(shù)為CA-A=36-6=30.
7.13
解析 因為a,b∈{-1,0,1,2},可分為兩類:①當(dāng)a=0時,b可能為-1或1或0或2,即b有4種不同的選法;
②當(dāng)a≠0時,依題意得Δ
7、=4-4ab≥0,所以ab≤1.當(dāng)a=-1時,b有4種不同的選法,當(dāng)a=1時,b可能為-1或0或1,即b有3種不同的選法,當(dāng)a=2時,b可能為-1或0,即b有2種不同的選法.根據(jù)分類計數(shù)原理,有序數(shù)對(a,b)的個數(shù)為4+4+3+2=13.
8.336
解析 甲、乙、丙3人站到共有7級的臺階上,共有73=343(種)站法,當(dāng)三個人同時站到同一個臺階的站法有7種,故若每級臺階最多站2人,有343-7=336(種)站法.
9.4
解析 方法一 因為|ai+1-ai|=1,所以ai+1-ai=1或ai+1-ai=-1,即數(shù)列{an}從前往后,相鄰兩項之間增加1或減少1,因為a1=0,a5=2
8、,所以從a1到a5有3次增加1,有1次減少1,故數(shù)列{an}的個數(shù)為C=4.
方法二 設(shè)bi=ai+1-ai,i=1,2,3,4,因為|ai+1-ai|=1,所以|bi|=1,即bi=1或-1.a5=a5-a4+a4-a3+a3-a2+a2-a1+a1=b4+b3+b2+b1=2,故bi(i=1,2,3,4)中有3個1,1個-1,故滿足條件的數(shù)列{an}的個數(shù)為C=4.
10.1080
解析 先分組,每組含有2戶家庭的有2組,則有種不同的分組方法,剩下的2戶家庭可以直接看成2組,然后將分成的4組進(jìn)行全排列,故有×A=1080(種)不同的分配方案.
11.18
解析 先在A,
9、B,C三個區(qū)域種植3個不同的植物,共有A=6(種)種法,若E與A種植的植物相同,最后種D,有1種種法;若E與C種植的植物相同,最后種D,有2種種法,根據(jù)分類計數(shù)原理和分步計數(shù)原理知共有6×(1+2)=18(種)不同的種法.
12.240
解析 方法一 (從元素考慮)從6名運動員中,選出4人有三種情況:(1)甲、乙都被選出,有C種選法;(2)甲、乙恰有1人被選出,有CC種選法;(3)甲、乙都未被選出,有C種選法.再將4人按要求安排位置:甲、乙都參加,有AA種排法;甲、乙中有一人參加,有AA種排法;甲、乙都不參加,有A種排法.故不同的參賽方法共有CAA+CCAA+CA=240(種).
10、
方法二 (從位置考慮)第一棒從甲、乙以外的4人中選取,再排其他各棒,有AA=240(種)不同的參賽方法.
方法三 (間接法)從總數(shù)中減去甲、乙跑第一棒的情況,有A-AA=240(種)不同的參賽方法.
13.840
解析 首先從下層中抽取2件商品,共有C=28(種)不同的結(jié)果,把抽出的2件商品放到上層有兩種情況:一種是2件商品相鄰,放在上層4件商品形成的5個空中,有5A=10(種)不同的調(diào)整方法;另一種是2件商品不相鄰,把抽出的2件商品插入上層4件商品形成的5個空中,有A=20(種)不同的調(diào)整方法,所以共有28×(10+20)=840(種)不同的調(diào)整方法.
14.3600
解析 三個數(shù)字相鄰,則共有A種情況,在A、B、C、D、E中選兩個不同的字母,共有A種不同的情況,這兩個字母形成三個空,將數(shù)字整體插空,共C種情況.綜上所述,此人選擇號牌的不同的方法種數(shù)為AAC=60×20×3=3600.