高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案

上傳人:仙*** 文檔編號(hào):40261270 上傳時(shí)間:2021-11-15 格式:DOC 頁(yè)數(shù):14 大?。?15KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案_第1頁(yè)
第1頁(yè) / 共14頁(yè)
高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案_第2頁(yè)
第2頁(yè) / 共14頁(yè)
高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案_第3頁(yè)
第3頁(yè) / 共14頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)文二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題1 突破點(diǎn)1 三角函數(shù)問題 Word版含答案(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5專題一三角函數(shù)與平面向量建知識(shí)網(wǎng)絡(luò)明內(nèi)在聯(lián)系高考點(diǎn)撥三角函數(shù)與平面向量是高考的高頻考點(diǎn),常以“兩小一大”或“4小”的形式呈現(xiàn),小題主要考查三角函數(shù)的圖象和性質(zhì)、平面向量及解三角形的內(nèi)容,大題??疾榻馊切蝺?nèi)容,有時(shí)平面向量還與圓錐曲線、線性規(guī)劃等知識(shí)相交匯本專題按照“三角函數(shù)問題”“解三角形”“平面向量”三條主線分門別類進(jìn)行備考突破點(diǎn)1三角函數(shù)問題核心知識(shí)提煉提煉1 三角函數(shù)的圖象問題(1)函數(shù)yAsin(x)解析式的確定:利用函數(shù)圖象的最高點(diǎn)和最低點(diǎn)確定A,利用周期確定,利用圖象的某一已知點(diǎn)坐標(biāo)確定.(2)三角函數(shù)圖象的兩種常見變換提煉2 三角函數(shù)奇偶性與對(duì)

2、稱性(1)yAsin(x),當(dāng)k(kZ)時(shí)為奇函數(shù);當(dāng)k(kZ)時(shí)為偶函數(shù);對(duì)稱軸方程可由xk(kZ)求得,對(duì)稱中心的橫坐標(biāo)可由xk,(kZ)解得(2)yAcos(x),當(dāng)k(kZ)時(shí)為奇函數(shù);當(dāng)k(kZ)時(shí)為偶函數(shù);對(duì)稱軸方程可由xk(kZ)求得,對(duì)稱中心的橫坐標(biāo)可由xk(kZ)解得yAtan(x),當(dāng)k(kZ)時(shí)為奇函數(shù);對(duì)稱中心的橫坐標(biāo)可由x(kZ)解得,無(wú)對(duì)稱軸提煉3 三角函數(shù)最值問題(1)yasin xbcos xc型函數(shù)的最值:可將y轉(zhuǎn)化為ysin(x)c的形式,這樣通過引入輔助角可將此類函數(shù)的最值問題轉(zhuǎn)化為ysin(x)c的最值問題,然后利用三角函數(shù)的圖象和性質(zhì)求解(2)yasi

3、n2xbsin xcos xccos2x型函數(shù)的最值:可利用降冪公式sin2x,sin xcos x,cos2x,將yasin2xbsin xcos xccos2x轉(zhuǎn)化整理為yAsin 2xBcos 2xC,這樣就可將其轉(zhuǎn)化為(1)的類型來(lái)求最值高考真題回訪回訪1三角函數(shù)的圖象問題1(20xx全國(guó)卷)函數(shù)yAsin(x)的部分圖象如圖11所示,則()圖11Ay2sinBy2sinCy2sin Dy2sinA由圖象知,故T,因此2.又圖象的一個(gè)最高點(diǎn)坐標(biāo)為,所以A2,且22k(kZ),故2k(kZ),結(jié)合選項(xiàng)可知y2sin.故選A.2(20xx全國(guó)卷)將函數(shù)y2sin的圖象向右平移個(gè)周期后,所得

4、圖象對(duì)應(yīng)的函數(shù)為()Ay2sin By2sinCy2sin Dy2sinD函數(shù)y2sin的周期為,將函數(shù)y2sin的圖象向右平移個(gè)周期即個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)為y2sin2sin,故選D.回訪2三角函數(shù)的性質(zhì)問題3(20xx全國(guó)卷)函數(shù)f(x)cos 2x6cos的最大值為()A4 B5C6 D7Bf(x)cos 2x6coscos 2x6sin x12sin2x6sin x22,又sin x1,1,當(dāng)sin x1時(shí),f(x)取得最大值5.故選B.4(20xx全國(guó)卷)在函數(shù)ycos |2x|,y|cos x|,ycos,ytan中,最小正周期為的所有函數(shù)為()AB C.DCycos |

5、2x|cos 2x,最小正周期為;由圖象知y|cos x|的最小正周期為;ycos 的最小正周期T;ytan的最小正周期T.5(20xx全國(guó)卷)函數(shù)f(x)2cos xsin x的最大值為_f(x)2cos xsin x,設(shè)sin ,cos ,則f(x)sin(x),函數(shù)f(x)2cos xsin x的最大值為.回訪3三角恒等變換6(20xx全國(guó)卷)已知,tan 2,則cos_.coscos cos sin sin (cos sin )又由,tan 2,知sin ,cos ,cos.7(20xx全國(guó)卷)已知是第四象限角,且sin,則tan_.由題意知sin,是第四象限角,所以cos0,所以co

6、s.tantan.熱點(diǎn)題型1三角函數(shù)的圖象問題題型分析:高考對(duì)該熱點(diǎn)的考查方式主要體現(xiàn)在以下兩方面:一是考查三角函數(shù)解析式的求法;二是考查三角函數(shù)圖象的平移變換,常以選擇、填空題的形式考查,難度較低【例1】(1)將函數(shù)ycos xsin x(xR)的圖象向左平移m(m0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是() 【導(dǎo)學(xué)號(hào):04024024】A.BC.D(2)(20xx深圳二模)已知函數(shù)f(x)2sin(x)(0),x的圖象如圖12所示,若f(x1)f(x2),且x1x2,則f(x1x2)()圖12A1 B. C. D2(1)A(2)A(1)設(shè)f(x)cos xsin x22s

7、in,向左平移m個(gè)單位長(zhǎng)度得g(x)2sin.g(x)的圖象關(guān)于y軸對(duì)稱,g(x)為偶函數(shù),mk(kZ),mk(kZ),又m0,m的最小值為.(2)由題可得周期T,則2,那么f(x)2sin(2x)由f2sin0,可得的一個(gè)值為,故f(x)2sin.由題知x1x22,故f(x1x2)2sin2sin1,故選A.方法指津1函數(shù)yAsin(x)的解析式的確定(1)A由最值確定,A;(2)由周期確定;(3)由圖象上的特殊點(diǎn)確定提醒:根據(jù)“五點(diǎn)法”中的零點(diǎn)求時(shí),一般先依據(jù)圖象的升降分清零點(diǎn)的類型2在圖象變換過程中務(wù)必分清是先相位變換,還是先周期變換變換只是相對(duì)于其中的自變量x而言的,如果x的系數(shù)不是1

8、,就要把這個(gè)系數(shù)提取后再確定變換的單位長(zhǎng)度和方向變式訓(xùn)練1(1)為了得到函數(shù)ysin的圖象,可以將函數(shù)ycos 2x的圖象()【導(dǎo)學(xué)號(hào):04024025】A向右平移個(gè)單位長(zhǎng)度B向右平移個(gè)單位長(zhǎng)度C向左平移個(gè)單位長(zhǎng)度D向左平移個(gè)單位長(zhǎng)度(2)函數(shù)f(x)Asin x(A0,0)的部分圖象如圖13所示,則f(1)f(2)f(3)f(2 016)的值為()圖13A0 B3C6 D(1)B(2)A(1)ycos 2xsin,ycos 2x的圖象向右平移個(gè)單位長(zhǎng)度,得ysinsin的圖象故選B.(2)由題圖可得,A2,T8,8,f(x)2sinx.f(1),f(2)2,f(3),f(4)0,f(5),f

9、(6)2,f(7),f(8)0,而2 0168252,f(1)f(2)f(2 016)0.熱點(diǎn)題型2三角函數(shù)的性質(zhì)問題題型分析:三角函數(shù)的性質(zhì)涉及周期性、單調(diào)性以及最值、對(duì)稱性等,是高考的重要命題點(diǎn)之一,常與三角恒等變換交匯命題,難度中等【例2】已知函數(shù)f(x)4tan xsincos.(1)求f(x)的定義域與最小正周期;(2)討論f(x)在區(qū)間上的單調(diào)性解 (1)f(x)的定義域?yàn)?分f(x)4tan xcos xcos4sin xcos4sin x2sin xcos x2sin2xsin 2x(1cos 2x)sin 2xcos 2x2sin4分所以f(x)的最小正周期T6分(2)令z2

10、x,則函數(shù)y2sin z的單調(diào)遞增區(qū)間是,kZ.由2k2x2k,得kxk,kZ8分設(shè)A,B,易知AB10分所以當(dāng)x時(shí),f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減12分方法指津研究函數(shù)yAsin(x)的性質(zhì)的“兩種”意識(shí)1轉(zhuǎn)化意識(shí):利用三角恒等變換把待求函數(shù)化成yAsin(x)B的形式2整體意識(shí):類比于研究ysin x的性質(zhì),只需將yAsin(x)中的“x”看成ysin x中的“x”代入求解便可變式訓(xùn)練2 (1)(名師押題)已知函數(shù)f(x)2sin,把函數(shù)f(x)的圖象沿x軸向左平移個(gè)單位,得到函數(shù)g(x)的圖象關(guān)于函數(shù)g(x),下列說(shuō)法正確的是() 【導(dǎo)學(xué)號(hào):04024026】A在上是增函數(shù)B

11、其圖象關(guān)于直線x對(duì)稱C函數(shù)g(x)是奇函數(shù)D當(dāng)x時(shí),函數(shù)g(x)的值域是2,1(2)(20xx全國(guó)卷)函數(shù)f(x)sincos的最大值為()A. B1C. D.(1)D(2)A(1)因?yàn)閒(x)2sin,把函數(shù)f(x)的圖象沿x軸向左平移個(gè)單位,得g(x)f2sin2sin2cos 2x.對(duì)于A,由x可知2x,故g(x)在上是減函數(shù),故A錯(cuò);又g2cos0,故x不是g(x)的對(duì)稱軸,故B錯(cuò);又g(x)2cos 2xg(x),故C錯(cuò);又當(dāng)x時(shí),2x,故g(x)的值域?yàn)?,1,D正確(2)法一:f(x)sincoscos xsin xsin xcos xcos xsin xsin xcos xsi

12、n,當(dāng)x2k(kZ)時(shí),f(x)取得最大值.故選A.法二:,f(x)sincossincossinsinsin.f(x)max.故選A.熱點(diǎn)題型3三角恒等變換題型分析:高考對(duì)該熱點(diǎn)的考查方式主要體現(xiàn)在以下兩個(gè)方面:一是直接利用和、差、倍、半角公式對(duì)三角函數(shù)式化簡(jiǎn)求值;二是以三角恒等變換為載體,考查yAsin(x)的有關(guān)性質(zhì)【例3】(1)(20xx合肥一模)已知sin 222cos 2,則tan _.(2)如圖14,圓O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C,B在圓O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為,AOC,若|BC|1,則cos2sincos 的值為_. 【導(dǎo)學(xué)號(hào):04024027】圖14(1)0

13、或(2)(1)由sin 222cos 2得2sin cos 4sin2,所以sin 0或tan ,當(dāng)sin 0時(shí),tan 0,故tan 0或.(2)由題意可知|OB|BC|1,OBC為正三角形由三角函數(shù)的定義可知,sinAOBsin,cos2sincoscos sin sin.方法指津1解決三角函數(shù)式的化簡(jiǎn)求值要堅(jiān)持“三看”原則:一看“角”,通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分;二是“函數(shù)名稱”,是需進(jìn)行“切化弦”還是“弦化切”等,從而確定使用的公式;三看“結(jié)構(gòu)特征”,了解變式或化簡(jiǎn)的方向2在研究形如f(x)asin xbcos x的函數(shù)的性質(zhì)時(shí),通常利用輔助角公式asin xbcos xsin(x)把函數(shù)f(x)化為Asin(x)的形式,通過對(duì)函數(shù)yAsin(x)性質(zhì)的研究得到f(x)asin xbcos x的性質(zhì)變式訓(xùn)練3(1)設(shè),且tan ,則()A3B2C3 D2(2)已知sinsin ,0,則cos等于() 【導(dǎo)學(xué)號(hào):04024028】AB C.D(1)B(2)C(1)由tan 得,即sin cos cos cos sin ,sin()cos sin.,由sin()sin,得,2.(2)sinsin ,0,sin cos ,sin cos ,coscos cos sin sin cos sin .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!