高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案
《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5專題能力訓(xùn)練7導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值能力突破訓(xùn)練1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f(x),且滿足f(x)=af(1)x+ln x,若f12=0,則a=()A.-1B.-2C.1D.22.(20xx浙江,7)函數(shù)y=f(x)的導(dǎo)函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是()3.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f(x)滿足f(x)k1,則下列結(jié)論中一定錯(cuò)誤的是()A.f1k1k-1C.f1k-1kk-14.已知常數(shù)a,b,c都是實(shí)數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f(x),f(x)0的解集為x|-2x
2、3.若f(x)的極小值等于-115,則a的值是()A.-8122B.13C.2D.55.若直線y=kx+b是曲線y=ln x+2的切線,也是曲線y=ln(x+1)的切線,則b=.6.在曲線y=x3+3x2+6x-1的切線中,斜率最小的切線方程為.7.設(shè)函數(shù)f(x)=aex+1aex+b(a0).(1)求f(x)在0,+)上的最小值;(2)設(shè)曲線y=f(x)在點(diǎn)(2,f(2)處的切線方程為y=32x,求a,b的值.8.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2)處的切線方程為y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的單調(diào)區(qū)間.9.設(shè)a1,函數(shù)f(x)=(
3、1+x2)ex-a.(1)求f(x)的單調(diào)區(qū)間;(2)證明:f(x)在區(qū)間(-,+)上僅有一個(gè)零點(diǎn);(3)若曲線y=f(x)在點(diǎn)P處的切線與x軸平行,且在點(diǎn)M(m,n)處的切線與直線OP平行(O是坐標(biāo)原點(diǎn)),證明:m3a-2e-1.10.已知函數(shù)f(x)=13x3+1-a2x2-ax-a,xR,其中a0.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間t,t+3上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間-3,-1上的最小值.思維提升訓(xùn)練11.(20xx陜
4、西咸陽(yáng)二模)已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f(x),對(duì)任意xR滿足f(x)+f(x)e3f(3)B.e2f(2)e3f(3)C.e2f(2)e3f(3)D.e2f(2)e3f(3)12.已知f(x)為定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),對(duì)任意實(shí)數(shù)x,都有f(x)f(x),則不等式em2f(m+1)0時(shí),若f(x)kx+1恒成立,求整數(shù)k的最大值.14.已知函數(shù)f(x)=ln x-12ax2+x,aR.(1)若f(1)=0,求函數(shù)f(x)的單調(diào)遞減區(qū)間;(2)若關(guān)于x的不等式f(x)ax-1恒成立,求整數(shù)a的最小值;(3)若a=-2,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0
5、,求證:x1+x25-12.15.(20xx山東,理20)已知函數(shù)f(x)=x2+2cos x,g(x)=ex(cos x-sin x+2x-2),其中e2.718 28是自然對(duì)數(shù)的底數(shù).(1)求曲線y=f(x)在點(diǎn)(,f()處的切線方程.(2)令h(x)=g(x)-af(x)(aR),討論h(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.參考答案專題能力訓(xùn)練7導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值能力突破訓(xùn)練1.D解析因?yàn)閒(x)=af(1)+1x,所以f(1)=af(1)+1,易知a1,則f(1)=11-a,所以f(x)=a1-a+1x.又因?yàn)閒12=0,所以a1-a+2=0,解得a=2.故選D.
6、2.D解析設(shè)導(dǎo)函數(shù)y=f(x)的三個(gè)零點(diǎn)分別為x1,x2,x3,且x10x2x3.所以在區(qū)間(-,x1)和(x2,x3)上,f(x)0,f(x)是增函數(shù),所以函數(shù)y=f(x)的圖象可能為D,故選D.3.C解析構(gòu)造函數(shù)F(x)=f(x)-kx,則F(x)=f(x)-k0,函數(shù)F(x)在R上為單調(diào)遞增函數(shù).1k-10,F1k-1F(0).F(0)=f(0)=-1,f1k-1-kk-1-1,即f1k-1kk-1-1=1k-1,f1k-11k-1,故C錯(cuò)誤.4.C解析依題意得f(x)=3ax2+2bx+c0的解集是-2,3,于是有3a0,-2+3=-2b3a,-23=c3a,則b=-3a2,c=-18
7、a.函數(shù)f(x)在x=3處取得極小值,于是有f(3)=27a+9b+3c-34=-115,則-812a=-81,解得a=2.故選C.5.1-ln 2解析對(duì)函數(shù)y=lnx+2求導(dǎo),得y=1x,對(duì)函數(shù)y=ln(x+1)求導(dǎo),得y=1x+1.設(shè)直線y=kx+b與曲線y=lnx+2相切于點(diǎn)P1(x1,y1),與曲線y=ln(x+1)相切于點(diǎn)P2(x2,y2),則y1=lnx1+2,y2=ln(x2+1).由點(diǎn)P1(x1,y1)在切線上,得y-(lnx1+2)=1x1(x-x1),由點(diǎn)P2(x2,y2)在切線上,得y-ln(x2+1)=1x2+1(x-x2).因?yàn)檫@兩條直線表示同一條直線,所以1x1=1
8、x2+1,ln(x2+1)=lnx1+x2x2+1+1,解得x1=12,所以k=1x1=2,b=lnx1+2-1=1-ln2.6.3x-y-2=0解析y=3x2+6x+6=3(x+1)2+33.當(dāng)x=-1時(shí),ymin=3;當(dāng)x=-1時(shí),y=-5.故切線方程為y+5=3(x+1),即3x-y-2=0.7.解(1)f(x)=aex-1aex.當(dāng)f(x)0,即x-lna時(shí),f(x)在區(qū)間(-lna,+)內(nèi)單調(diào)遞增;當(dāng)f(x)0,即x-lna時(shí),f(x)在區(qū)間(-,-lna)內(nèi)單調(diào)遞減.當(dāng)0a0,f(x)在區(qū)間(0,-lna)內(nèi)單調(diào)遞減,在區(qū)間(-lna,+)內(nèi)單調(diào)遞增,從而f(x)在區(qū)間0,+)內(nèi)的
9、最小值為f(-lna)=2+b;當(dāng)a1時(shí),-lna0,f(x)在區(qū)間0,+)內(nèi)單調(diào)遞增,從而f(x)在區(qū)間0,+)內(nèi)的最小值為f(0)=a+1a+b.(2)依題意f(2)=ae2-1ae2=32,解得ae2=2或ae2=-12(舍去).所以a=2e2,代入原函數(shù)可得2+12+b=3,即b=12.故a=2e2,b=12.8.解(1)因?yàn)閒(x)=xea-x+bx,所以f(x)=(1-x)ea-x+b.依題設(shè),f(2)=2e+2,f(2)=e-1,即2ea-2+2b=2e+2,-ea-2+b=e-1,解得a=2,b=e.(2)由(1)知f(x)=xe2-x+ex.由f(x)=e2-x(1-x+ex
10、-1)及e2-x0知,f(x)與1-x+ex-1同號(hào).令g(x)=1-x+ex-1,則g(x)=-1+ex-1.所以,當(dāng)x(-,1)時(shí),g(x)0,g(x)在區(qū)間(1,+)上單調(diào)遞增.故g(1)=1是g(x)在區(qū)間(-,+)上的最小值,從而g(x)0,x(-,+).綜上可知,f(x)0,x(-,+).故f(x)的單調(diào)遞增區(qū)間為(-,+).9.解(1)由題意可知函數(shù)f(x)的定義域?yàn)镽,f(x)=(1+x2)ex+(1+x2)(ex)=(1+x)2ex0,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(-,+),無(wú)單調(diào)遞減區(qū)間.(2)a1,f(0)=1-a1+a2-a2a-a=a0.函數(shù)f(x)在區(qū)間(0,a)
11、上存在零點(diǎn).又由(1)知函數(shù)f(x)在區(qū)間(-,+)內(nèi)單調(diào)遞增,函數(shù)f(x)在區(qū)間(-,+)內(nèi)僅有一個(gè)零點(diǎn).(3)由(1)及f(x)=0,得x=-1.又f(-1)=2e-a,即P-1,2e-a,kOP=2e-a-0-1-0=a-2e.又f(m)=(1+m)2em,(1+m)2em=a-2e.令g(m)=em-m-1,則g(m)=em-1,由g(m)0,得m0,由g(m)0,得m0.當(dāng)x變化時(shí),f(x),f(x)的變化情況如下表:x(-,-1)-1(-1,a)a(a,+)f(x)+0-0+f(x)極大值極小值故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-,-1),(a,+);單調(diào)遞減區(qū)間是(-1,a).(2
12、)由(1)知f(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,從而函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn)當(dāng)且僅當(dāng)f(-2)0,f(0)0,解得0a13.所以a的取值范圍是0,13.(3)當(dāng)a=1時(shí),f(x)=13x3-x-1.由(1)知f(x)在區(qū)間-3,-1上單調(diào)遞增,在區(qū)間-1,1上單調(diào)遞減,在區(qū)間1,2上單調(diào)遞增.當(dāng)t-3,-2時(shí),t+30,1,-1t,t+3,f(x)在區(qū)間t,-1上單調(diào)遞增,在區(qū)間-1,t+3上單調(diào)遞減.因此f(x)在區(qū)間t,t+3上的最大值M(t)=f(-1)=-13,最小值m(t)為f(t)與f(t+3)中的較小者.由f(t+3)-f(t
13、)=3(t+1)(t+2)知,當(dāng)t-3,-2時(shí),f(t)f(t+3),則m(t)=f(t),所以g(t)=f(-1)-f(t).因?yàn)閒(t)在區(qū)間-3,-2上單調(diào)遞增,所以f(t)f(-2)=-53.故g(t)在區(qū)間-3,-2上的最小值為g(-2)=-13-53=43.當(dāng)t-2,-1時(shí),t+31,2,且-1,1t,t+3.下面比較f(-1),f(1),f(t),f(t+3)的大小.因?yàn)閒(x)在區(qū)間-2,-1,1,2上單調(diào)遞增,所以f(-2)f(t)f(-1),f(1)f(t+3)f(2).因?yàn)閒(1)=f(-2)=-53,f(-1)=f(2)=-13,從而M(t)=f(-1)=-13,m(t
14、)=f(1)=-53.所以g(t)=M(t)-m(t)=43.綜上,函數(shù)g(t)在區(qū)間-3,-1上的最小值為43.思維提升訓(xùn)練11.A解析利用單調(diào)性解抽象不等式時(shí),關(guān)鍵要注意結(jié)論與已知條件的聯(lián)系,通過(guò)構(gòu)造合適的函數(shù)來(lái)求解.令g(x)=exf(x),則g(x)=ex(f(x)+f(x)g(3),即e2f(2)e3f(3).故選A.12.(-,-2)解析若g(x)=f(x)ex,則g(x)=f(x)-f(x)ex0,所以g(x)在R上為增函數(shù).又不等式em2f(m+1)em+1fm2等價(jià)于f(m+1)em+1fm2em2,即g(m+1)gm2,所以m+1m2,解得m0,f(x)0時(shí),f(x)kx+
15、1恒成立,則k0)(x)=-xx+10,(3)=2ln2-20.則f(x)=1x-2x+1=-2x2+x+1x(x0).令f(x)0.又x0,所以x1.所以f(x)的單調(diào)遞減區(qū)間為(1,+).(2)(方法一)令g(x)=f(x)-(ax-1)=lnx-12ax2+(1-a)x+1,則g(x)=1x-ax+(1-a)=-ax2+(1-a)x+1x.當(dāng)a0時(shí),因?yàn)閤0,所以g(x)0.所以g(x)在區(qū)間(0,+)內(nèi)是增函數(shù),又g(1)=ln1-12a12+(1-a)+1=-32a+20,所以關(guān)于x的不等式f(x)ax-1不能恒成立.當(dāng)a0時(shí),g(x)=-ax2+(1-a)x+1x=-ax-1a(x
16、+1)x(x0),令g(x)=0,得x=1a.所以當(dāng)x0,1a時(shí),g(x)0;當(dāng)x1a,+時(shí),g(x)0,h(2)=14-ln20,又h(a)在a(0,+)內(nèi)是減函數(shù),且a為整數(shù),所以當(dāng)a2時(shí),h(a)0.所以整數(shù)a的最小值為2.(方法二)由f(x)ax-1恒成立,得lnx-12ax2+xax-1在(0,+)內(nèi)恒成立,問(wèn)題等價(jià)于alnx+x+112x2+x在區(qū)間(0,+)內(nèi)恒成立.令g(x)=lnx+x+112x2+x,因?yàn)間(x)=(x+1)-12x-lnx12x2+x2,令g(x)=0,得-12x-lnx=0.設(shè)h(x)=-12x-lnx,因?yàn)閔(x)=-12-1x0;當(dāng)x(x0,+)時(shí),
17、g(x)0,h(1)=-120,所以12x01,此時(shí)11x00.由f(x1)+f(x2)+x1x2=0,得lnx1+x12+x1+lnx2+x22+x2+x1x2=0,從而(x1+x2)2+x1+x2=x1x2-ln(x1x2).令t=x1x2(t0),(t)=t-lnt,則(t)=t-1t.可知,(t)在區(qū)間(0,1)內(nèi)單調(diào)遞減,在區(qū)間(1,+)內(nèi)單調(diào)遞增.所以(t)(1)=1,所以(x1+x2)2+x1+x21,因此x1+x25-12或x1+x2-5-12(舍去).15.解(1)由題意f()=2-2,又f(x)=2x-2sinx,所以f()=2,因此曲線y=f(x)在點(diǎn)(,f()處的切線方
18、程為y-(2-2)=2(x-),即y=2x-2-2.(2)由題意得h(x)=ex(cosx-sinx+2x-2)-a(x2+2cosx),因?yàn)閔(x)=ex(cosx-sinx+2x-2)+ex(-sinx-cosx+2)-a(2x-2sinx)=2ex(x-sinx)-2a(x-sinx)=2(ex-a)(x-sinx),令m(x)=x-sinx,則m(x)=1-cosx0,所以m(x)在R上單調(diào)遞增.因?yàn)閙(0)=0,所以當(dāng)x0時(shí),m(x)0;當(dāng)x0時(shí),m(x)0,當(dāng)x0時(shí),h(x)0時(shí),h(x)0,h(x)單調(diào)遞增,所以當(dāng)x=0時(shí)h(x)取到極小值,極小值是h(0)=-2a-1;當(dāng)a0時(shí)
19、,h(x)=2(ex-elna)(x-sinx),由h(x)=0得x1=lna,x2=0.()當(dāng)0a1時(shí),lna0,當(dāng)x(-,lna)時(shí),ex-elna0,h(x)單調(diào)遞增;當(dāng)x(lna,0)時(shí),ex-elna0,h(x)0,h(x)0,h(x)單調(diào)遞增.所以當(dāng)x=lna時(shí)h(x)取到極大值.極大值為h(lna)=-aln2a-2lna+sin(lna)+cos(lna)+2,當(dāng)x=0時(shí)h(x)取到極小值,極小值是h(0)=-2a-1;()當(dāng)a=1時(shí),lna=0,所以當(dāng)x(-,+)時(shí),h(x)0,函數(shù)h(x)在(-,+)上單調(diào)遞增,無(wú)極值;()當(dāng)a1時(shí),lna0,所以當(dāng)x(-,0)時(shí),ex-e
20、lna0,h(x)單調(diào)遞增;當(dāng)x(0,lna)時(shí),ex-elna0,h(x)0,h(x)0,h(x)單調(diào)遞增.所以當(dāng)x=0時(shí)h(x)取到極大值,極大值是h(0)=-2a-1;當(dāng)x=lna時(shí)h(x)取到極小值,極小值是h(lna)=-aln2a-2lna+sin(lna)+cos(lna)+2.綜上所述:當(dāng)a0時(shí),h(x)在區(qū)間(-,0)上單調(diào)遞減,在區(qū)間(0,+)上單調(diào)遞增,函數(shù)h(x)有極小值,極小值是h(0)=-2a-1;當(dāng)0a1時(shí),函數(shù)h(x)在區(qū)間(-,0)和(lna,+)上單調(diào)遞增,在區(qū)間(0,lna)上單調(diào)遞減,函數(shù)h(x)有極大值,也有極小值,極大值是h(0)=-2a-1,極小值是h(lna)=-aln2a-2lna+sin(lna)+cos(lna)+2.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡(jiǎn)單戰(zhàn)術(shù)配合
- PDCA與8D解決問(wèn)題的有效方法專訓(xùn)(ppt 26頁(yè))
- 探測(cè)暗盒里的電路課件
- 姑息手術(shù)監(jiān)護(hù)策略課件
- 第二章電力系統(tǒng)元件及其參數(shù)
- 高錳酸鉀標(biāo)準(zhǔn)溶液的配制和標(biāo)定
- 組合數(shù)學(xué)在程序設(shè)計(jì)中的應(yīng)用
- 四則運(yùn)算運(yùn)算定律 (3)(精品)
- 腎病綜合癥診斷研究報(bào)告課件
- 喜之郎某某年傳播建議)
- 啤酒業(yè)年度經(jīng)營(yíng)預(yù)算管理流程(1)
- 商務(wù)談判中的個(gè)性利用
- 生產(chǎn)管理PPT -6勞動(dòng)定額管理簡(jiǎn)介
- 排隊(duì)論模型及實(shí)例
- 生產(chǎn)現(xiàn)場(chǎng)定置管理