《數(shù)學(xué)理一輪對(duì)點(diǎn)訓(xùn)練:642 數(shù)列的綜合應(yīng)用 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)理一輪對(duì)點(diǎn)訓(xùn)練:642 數(shù)列的綜合應(yīng)用 Word版含解析(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.51若a,b是函數(shù)f(x)x2pxq(p0,q0)的兩個(gè)不同的零點(diǎn),且a,b,2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則pq的值等于()A6 B7C8 D9答案D解析由題可知a,b是x2pxq0的兩根,abp0,abq0,故a,b均為正數(shù)a,b,2適當(dāng)排序后成等比數(shù)列,2是a,b的等比中項(xiàng),得ab4,q4.又a,b,2適當(dāng)排序后成等差數(shù)列,所以2是第一項(xiàng)或第三項(xiàng),不防設(shè)a0,a1,此時(shí)b4,pab5,pq9,選D.2.設(shè)Sn為等比數(shù)列an的前n項(xiàng)和若a11,且3S1,2S2,S3成等差數(shù)列,則an_.答案3n1解析由3S1,2S2,S3成等差
2、數(shù)列,得4S23S1S3,即3S23S1S3S2,則3a2a3,得公比q3,所以ana1qn13n1.3設(shè)Sn是數(shù)列an的前n項(xiàng)和,且a11,an1SnSn1,則Sn_.答案解析an1Sn1Sn,Sn1SnSn1Sn,又由a11,知Sn0,1,是等差數(shù)列,且公差為1,而1,1(n1)(1)n,Sn.4.設(shè)nN*,xn是曲線yx2n21在點(diǎn)(1,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)(1)求數(shù)列xn的通項(xiàng)公式;(2)記Tnxxx,證明:Tn.解(1)y(x2n21)(2n2)x2n1,曲線yx2n21在點(diǎn)(1,2)處的切線斜率為2n2,從而切線方程為y2(2n2)(x1)令y0,解得切線與x軸交點(diǎn)的橫坐
3、標(biāo)xn1.(2)證明:由題設(shè)和(1)中的計(jì)算結(jié)果知Tnxxx222.當(dāng)n1時(shí),T1.當(dāng)n2時(shí),因?yàn)閤2.所以Tn2.綜上可得對(duì)任意的nN*,都有Tn.5設(shè)等差數(shù)列an的公差為d,點(diǎn)(an,bn)在函數(shù)f(x)2x的圖象上(nN*)(1)若a12,點(diǎn)(a8,4b7)在函數(shù)f(x)的圖象上,求數(shù)列an的前n項(xiàng)和Sn;(2)若a11,函數(shù)f(x)的圖象在點(diǎn)(a2,b2)處的切線在x軸上的截距為2,求數(shù)列的前n項(xiàng)和Tn.解(1)由已知,b72a7,b82a84b7,有2a842a72a72.解得da8a72.所以,Snna1d2nn(n1)n23n.(2)函數(shù)f(x)2x在(a2,b2)處的切線方程為
4、y2a2(2a2ln 2)(xa2),它在x軸上的截距為a2.由題意,a22,解得a22.所以,da2a11.從而ann,bn2n.所以Tn,2Tn.因此,2TnTn12.所以,Tn.6已知數(shù)列an和bn滿足a1a2a3an()bn(nN*)若an為等比數(shù)列,且a12,b36b2.(1)求an與bn;(2)設(shè)cn(nN*)記數(shù)列cn的前n項(xiàng)和為Sn.求Sn;求正整數(shù)k,使得對(duì)任意nN*均有SkSn.解(1)由題意a1a2a3an()bn,b3b26,知a3()8,又由a12,得公比q2(q2舍去),所以數(shù)列an的通項(xiàng)為an2n(nN*)所以,a1a2a3an2()n(n1)故數(shù)列bn的通項(xiàng)為b
5、nn(n1)(nN*)(2)由(1)知cn(nN*),所以Sn(nN*)因?yàn)閏10,c20,c30,c40,當(dāng)n5時(shí),cn,而0,得1.所以,當(dāng)n5時(shí),cn0.綜上,對(duì)任意nN*恒有S4Sn,故k4.7設(shè)數(shù)列an的前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱an是“H數(shù)列”(1)若數(shù)列an的前n項(xiàng)和Sn2n(nN*),證明:an是“H數(shù)列”;(2)設(shè)an是等差數(shù)列,其首項(xiàng)a11,公差d0.若an是“H數(shù)列”,求d的值;(3)證明:對(duì)任意的等差數(shù)列an,總存在兩個(gè)“H數(shù)列”bn和cn,使得anbncn(nN*)成立解(1)證明:由已知,當(dāng)n1時(shí),an1Sn1Sn2n12
6、n2n.于是對(duì)任意的正整數(shù)n,總存在正整數(shù)mn1,使得Sn2nam.所以an是“H數(shù)列”(2)由已知,得S22a1d2d.因?yàn)閍n是“H數(shù)列”,所以存在正整數(shù)m,使得S2am,即2d1(m1)d,于是(m2)d1.因?yàn)閐0,所以m20,故m1,從而d1.當(dāng)d1時(shí),an2n,Sn是小于2的整數(shù),nN*.于是對(duì)任意的正整數(shù)n,總存在正整數(shù)m2Sn2,使得Sn2mam.所以an是“H數(shù)列”因此d的值為1.(3)證明:設(shè)等差數(shù)列an的公差為d,則ana1(n1)dna1(n1)(da1)(nN*)令bnna1,cn(n1)(da1),則anbncn(nN*)下證bn是“H數(shù)列”設(shè)bn的前n項(xiàng)和為Tn,則Tna1(nN*)于是對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Tnbm.所以bn是“H數(shù)列”同理可證cn也是“H數(shù)列”所以,對(duì)任意的等差數(shù)列an,總存在兩個(gè)“H數(shù)列”bn和cn,使得anbncn(nN*)成立