《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第九章 第一節(jié) 隨機(jī)事件的概率 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第九章 第一節(jié) 隨機(jī)事件的概率 Word版含解析(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
課時(shí)規(guī)范練
A組 基礎(chǔ)對(duì)點(diǎn)練
1.集合A={2,3},B={1,2,3},從A,B中各任意取一個(gè)數(shù),則這兩數(shù)之和等于4的概率是( )
A. B.
C. D.
解析:從A、B中各取一個(gè)數(shù)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6種情況,其中和為4的有(2,2),(3,1),共2種情況,所以所求概率P==,選C.
答案:C
2.容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如下表:
分組
[10,20)
[20,30)
[30,4
2、0)
[40,50)
[50,60)
[60,70)
頻數(shù)
2
3
4
5
4
2
則樣本數(shù)據(jù)落在區(qū)間[10,40)的頻率為( )
A.0.35 B.0.45
C.0.55 D.0.65
解析:數(shù)據(jù)落在[10,40)的頻率為==0.45,故選B.
答案:B
3.從1,2,3,4,5這5個(gè)數(shù)中任取兩個(gè)數(shù),其中:①恰有一個(gè)是偶數(shù)和恰有一個(gè)是奇數(shù);②至少有一個(gè)是奇數(shù)和兩個(gè)都是奇數(shù);③至少有一個(gè)是奇數(shù)和兩個(gè)都是偶數(shù);④至少有一個(gè)是奇數(shù)和至少有一個(gè)是偶數(shù),上述事件中,是對(duì)立事件的是 ( )
A.① B.②④
C.③ D.①③
解析:從1,2,
3、3,4,5這5個(gè)數(shù)中任取兩個(gè)數(shù),有三種情況:一奇一偶,兩個(gè)奇數(shù),兩個(gè)偶數(shù).其中至少有一個(gè)是奇數(shù)包含一奇一偶,兩個(gè)奇數(shù)這兩種情況,它與兩個(gè)都是偶數(shù)是對(duì)立事件,而①中的事件可能同時(shí)發(fā)生,不是對(duì)立事件,故選C.
答案:C
4.在第3、6、16路公共汽車(chē)的一個(gè)??空?假定這個(gè)車(chē)站只能??恳惠v公共汽車(chē)),有一位乘客需在5分鐘之內(nèi)乘上公共汽車(chē)趕到廠里,他可乘3路或6路公共汽車(chē)到廠里,已知3路車(chē)和6路車(chē)在5分鐘之內(nèi)到此車(chē)站的概率分別為0.20和0.60,則該乘客在5分鐘內(nèi)能乘上所需要的車(chē)的概率為( )
A.0.20 B.0.60
C.0.80 D.0.12
解析:“能乘上所需要的車(chē)”記為事件
4、A,則3路或6路車(chē)有一輛路過(guò)即事件發(fā)生,故P(A)=0.20+0.60=0.80.
答案:C
5.若A,B為互斥事件,P(A)=0.4,P(A∪B)=0.7,則P(B)=________.
解析:∵A,B為互斥事件,∴P(A∪B)=P(A)+P(B),∴P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.
答案:0.3
6.某產(chǎn)品分甲、乙、丙三級(jí),其中乙、丙兩級(jí)均屬次品.若生產(chǎn)中出現(xiàn)乙級(jí)品的概率為0.03,丙級(jí)品的概率為0.01,則對(duì)成品抽查一件抽得正品的概率為_(kāi)_______.
解析:記“生產(chǎn)中出現(xiàn)甲級(jí)品、乙級(jí)品、丙級(jí)品”分別為事件A,B,C.則A,B,C彼此互斥,由題意可
5、得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96.
答案:0.96
7.在一次滿分為160分的數(shù)學(xué)考試中,某班40名學(xué)生的考試成績(jī)分布如下:
成績(jī)(分)
80分以下
[80,100)
[100,120)
[120,140)
[140,160]
人數(shù)
8
8
12
10
2
在該班隨機(jī)抽取一名學(xué)生,則該生在這次考試中成績(jī)?cè)?20分及以上的概率為_(kāi)_______.
解析:由成績(jī)分布表知120分及以上的人數(shù)為12,所以所求概率為=0.3.
答案:0.3
8.某班選派5人,參加學(xué)校舉行
6、的數(shù)學(xué)競(jìng)賽,獲獎(jiǎng)的人數(shù)及其概率如下:
獲獎(jiǎng)人數(shù)
0
1
2
3
4
5
概率
0.1
0.16
x
y
0.2
z
(1)若獲獎(jiǎng)人數(shù)不超過(guò)2人的概率為0.56,求x的值;
(2)若獲獎(jiǎng)人數(shù)最多4人的概率為0.96,最少3人的概率為0.44,求y、z的值.
解析:記事件“在競(jìng)賽中,有k人獲獎(jiǎng)”為Ak(k∈N,k≤5),則事件Ak彼此互斥.
(1)∵獲獎(jiǎng)人數(shù)不超過(guò)2人的概率為0.56.
∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.
解得x=0.3.
(2)由獲獎(jiǎng)人數(shù)最多4人的概率為0.96,得P(A5)=1-0.96=0.04,即
7、z=0.04.
由獲獎(jiǎng)人數(shù)最少3人的概率為0.44,得
P(A3)+P(A4)+P(A5)=0.44,
即y+0.2+0.04=0.44.解得y=0.2.
9.某校在高三抽取了500名學(xué)生,記錄了他們選修A、B、C三門(mén)課的情況,如下表:
科目
學(xué)生人數(shù)
A
B
C
120
是
否
是
60
否
否
是
70
是
是
否
50
是
是
是
150
否
是
是
50
是
否
否
(1)試估計(jì)該校高三學(xué)生在A、B、C三門(mén)選修課中同時(shí)選修兩門(mén)課的概率;
(2)若某高三學(xué)生已選修A門(mén)課,則該學(xué)生同時(shí)選修B、C中哪門(mén)課的可能性大?
解
8、析:(1)由頻率估計(jì)概率得所求概率P==0.68.
(2)若某學(xué)生已選修A門(mén)課,則該學(xué)生同時(shí)選修B門(mén)課的概率為P(B)==,
選修C門(mén)課的概率為P(C)==,
因?yàn)?lt;,
所以該學(xué)生同時(shí)選修C門(mén)課的可能性大.
B組 能力提升練
1.(20xx·濟(jì)寧模擬)有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9
[23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12
[35.5,39.5) 7 [39.5,43.5) 3
根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)
9、落在[27.5,43.5)的概率約是( )
A. B.
C. D.
解析:[27.5,43.5)的頻數(shù)為11+12+7+3=33,概率=.
答案:C
2.(20xx·淄博模擬)下列各組事件中,不是互斥事件的是( )
A.一個(gè)射手進(jìn)行一次射擊,命中環(huán)數(shù)大于8與命中環(huán)數(shù)小于6
B.統(tǒng)計(jì)一個(gè)班的數(shù)學(xué)成績(jī),平均分不低于90分與平均分不高于90分
C.播種100粒菜籽,發(fā)芽90粒與發(fā)芽80粒
D.檢驗(yàn)?zāi)撤N產(chǎn)品,合格率高于70%與合格率低于70%
解析:平均分不低于90分,含有90分;平均分不高于90分,也含有90分,兩者不互斥.
答案:B
3.現(xiàn)有一枚質(zhì)地均勻且
10、表面分別標(biāo)有1、2、3、4、5、6的正方體骰子,將這枚骰子先后拋擲兩次,這兩次出現(xiàn)的點(diǎn)數(shù)之和大于點(diǎn)數(shù)之積的概率為( )
A. B.
C. D.
解析:將這枚骰子先后拋擲兩次的基本事件總數(shù)為6×6=36(個(gè)),
這兩次出現(xiàn)的點(diǎn)數(shù)之和大于點(diǎn)數(shù)之積包含的基本事件有
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11個(gè),
∴這兩次出現(xiàn)的點(diǎn)數(shù)之和大于點(diǎn)數(shù)之積的概率為P=.故選D.
答案:D
4.拋擲一枚均勻的正方體骰子(各面分別標(biāo)有數(shù)字1、2、3、4、5、6),事件A表示“朝上一面的數(shù)
11、是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過(guò)2”,則P(A+B)=________.
解析:將事件A+B分為:事件C“朝上一面的數(shù)為1、2”與事件D“朝上一面的數(shù)為3、5”.
則C、D互斥,則P(C)=,P(D)=,
∴P(A+B)=P(C+D)=P(C)+P(D)=.
答案:
5.若隨機(jī)事件A,B互斥,A,B發(fā)生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,則實(shí)數(shù)a的取值范圍是________.
解析:由題意知?
??<a≤.
答案:(,]
6.假設(shè)甲乙兩種品牌的同類(lèi)產(chǎn)品在某地區(qū)市場(chǎng)上銷(xiāo)售量相等,為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機(jī)抽取100個(gè)
12、進(jìn)行測(cè)試,結(jié)果統(tǒng)計(jì)如下:
(1)估計(jì)甲品牌產(chǎn)品壽命小于200小時(shí)的概率;
(2)這兩種品牌產(chǎn)品中,某個(gè)產(chǎn)品已使用了200小時(shí),試估計(jì)該產(chǎn)品是甲品牌的概率.
解析:(1)甲品牌產(chǎn)品壽命小于200小時(shí)的頻率為=,用頻率估計(jì)概率,所以甲品牌產(chǎn)品壽命小于200小時(shí)的概率為.
(2)根據(jù)抽樣結(jié)果,壽命大于200小時(shí)的產(chǎn)品共有75+70=145(個(gè)),其中甲品牌產(chǎn)品是75個(gè),所以在樣本中,壽命大于200小時(shí)的產(chǎn)品是甲品牌的頻率是=,用頻率估計(jì)概率,所以已使用了200小時(shí)的該產(chǎn)品是甲品牌的概率為.
7.某保險(xiǎn)公司利用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)投保車(chē)輛進(jìn)行抽樣,樣本車(chē)輛中每輛車(chē)的賠付結(jié)果統(tǒng)計(jì)如下
13、:
賠付金額(元)
0
1 000
2 000
3 000
4 000
車(chē)輛數(shù)(輛)
500
130
100
150
120
(1)若每輛車(chē)的投保金額均為2 800元,估計(jì)賠付金額大于投保金額的概率;
(2)在樣本車(chē)輛中,車(chē)主是新司機(jī)的占10%,在賠付金額為4 000元的樣本車(chē)輛中,車(chē)主是新司機(jī)的占20%,估計(jì)在已投保車(chē)輛中,新司機(jī)獲賠金額為4 000元的概率.
解析:(1)設(shè)A表示事件“賠付金額為3 000元”,B表示事件“賠付金額為4 000元”,以頻率估計(jì)概率得
P(A)==0.15,P(B)==0.12.
由于投保金額為2 800元,賠付金額大于投保金額對(duì)應(yīng)的情形是3 000元和4 000元,所以其概率為P(A)+P(B)=0.15+0.12=0.27.
(2)設(shè)C表示事件“投保車(chē)輛中新司機(jī)獲賠4 000元”,由已知,樣本車(chē)輛中車(chē)主為新司機(jī)的有0.1×1 000=100輛,而賠付金額為4 000元的車(chē)輛中,車(chē)主為新司機(jī)的有0.2×120=24輛,所以樣本車(chē)輛中新司機(jī)車(chē)主獲賠金額為4 000元的頻率為=0.24,由頻率估計(jì)概率得P(C)=0.24.