《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第五章 第二節(jié) 等差數(shù)列及其前n項(xiàng)和 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第五章 第二節(jié) 等差數(shù)列及其前n項(xiàng)和 Word版含解析(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5課時(shí)規(guī)范練A組基礎(chǔ)對(duì)點(diǎn)練1在單調(diào)遞增的等差數(shù)列an中,若a31,a2a4,則a1()A1B0C. D.解析:由題知,a2a42a32,又a2a4,數(shù)列an單調(diào)遞增,a2,a4.公差d.a1a2d0.答案:B2等差數(shù)列an的前n項(xiàng)和為Sn,若S8S436,a62a4,則a1()A2 B0C2 D4解析:設(shè)等差數(shù)列an的公差為d,S8S436,a62a4,解得故選A.答案:A3等差數(shù)列an中,a11, an100(n3)若an的公差為某一自然數(shù),則n的所有可能取值為()A3,7,9,15,100 B4,10,12,34,100C5,11,16,30,100 D4,
2、10,13,43,100解析:由等差數(shù)列的通項(xiàng)公式得,公差d.又因?yàn)閐N,n3,所以n1可能為3,9,11,33,99,n的所有可能取值為4,10,12,34,100,故選B.答案:B4設(shè)Sn是等差數(shù)列an的前n項(xiàng)和,若a1a3a53,則S5()A5 B7C9 D11解析:因?yàn)閍n是等差數(shù)列,a1a52a3,即a1a3a53a33,a31,S55a35,故選A.答案:A5若等差數(shù)列an的前5項(xiàng)之和S525,且a23,則a7()A12 B13C14 D15解析:由S5,得25,解得a47,所以732d,即d2,所以a7a43d73213.答案:B6已知等差數(shù)列an中,an0,若n2且an1an1
3、a0,S2n138,則n等于_解析:an是等差數(shù)列,2anan1an1,又an1an1a0,2ana0,即an(2an)0.an0,an2.S2n1(2n1)an2(2n1)38,解得n10.答案:107中位數(shù)為1 010的一組數(shù)構(gòu)成等差數(shù)列,其末項(xiàng)為2 015,則該數(shù)列的首項(xiàng)為_解析:設(shè)數(shù)列首項(xiàng)為a1,則1 010,故a15.答案:58(20xx河北三市聯(lián)考)已知Sn是等差數(shù)列an的前n項(xiàng)和,若S55a410,求數(shù)列an的公差解析:由S55a410,得5a35a410,則公差d2.9已知數(shù)列an滿足a11,an(nN*,n2),數(shù)列bn滿足關(guān)系式bn(nN*)(1)求證:數(shù)列bn為等差數(shù)列;
4、(2)求數(shù)列an的通項(xiàng)公式解析:(1)證明:bn,且 an,bn1,bn1bn2.又b11,數(shù)列bn是以1為首項(xiàng),2為公差的等差數(shù)列(2)由(1)知數(shù)列bn的通項(xiàng)公式為bn1(n1)22n1,又bn,an.數(shù)列an的通項(xiàng)公式為an.B組能力提升練1已知數(shù)列an的首項(xiàng)為3,bn為等差數(shù)列,且bnan1an(nN*),若b32,b212,則a8()A0 B109C181 D121解析:設(shè)等差數(shù)列bn的公差為d,則db3b214,因?yàn)閍n1anbn,所以a8a1b1b2b7(b2d)(b25d)112,又a13,則a8109.答案:B2(20xx唐山統(tǒng)考)已知等差數(shù)列an的前n項(xiàng)和為Sn,若S112
5、2,則a3a7a8()A18 B12C9 D6解析:設(shè)等差數(shù)列an的公差為d,由題意得S1122,即a15d2,所以a3a7a8a12da16da17d3(a15d)6,故選D.答案:D3已知數(shù)列an是等差數(shù)列,數(shù)列bn是等比數(shù)列,公比為q,數(shù)列cn中,cnanbn,Sn是數(shù)列cn的前n項(xiàng)和若Sm11,S2m7,S3m201(m為正偶數(shù)),則S4m的值為()A1 601 B1 801C2 001 D2 201解析:令A(yù)Sm11,BS2mSm4,CS3mS2m208,則qmA(a1b1a2b2ambm)qma1bm1amb2m.故BqmA(am1a1)bm1(a2mam)b2mmd(bm1b2m
6、),其中,d是數(shù)列an的公差,q是數(shù)列bn的公比同理CqmBmd(b2m1b3m)md(bm1b2m)qm,故CqmBqm(BqmA)代入已知條件,可得11(qm)28qm2080,解得qm4或qm(因m為正偶數(shù),舍去)又S4mS3m(a1b1a2b2ambm)q3m3md(bm1b2m)q2m11433(BqmA)421143312431 600.故S4mS3m1 6001 801.答案:B4(20xx長(zhǎng)春質(zhì)檢)設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,a10且,則當(dāng)Sn取最大值時(shí),n的值為()A9 B10C11 D12解析:由題意,不妨設(shè)a69t,a511t,則公差d2t,其中t0,因此a10t,a
7、11t,即當(dāng)n10時(shí),Sn取得最大值,故選B.答案:B5在等差數(shù)列an中,a9a126,則數(shù)列an的前11項(xiàng)和S11等于_解析:S1111a6,設(shè)公差為d,由a9a126得a63d(a66d)6,解得a612,所以S111112132.答案:1326等差數(shù)列an的前n項(xiàng)和為Sn,已知S100,S1525,則nSn的最小值為_解析:由已知得,解得a13,d,那么nSnn2a1d.由于函數(shù)f(x)在x處取得極小值,又n6時(shí),6S648,n7時(shí),7S749,故nSn的最小值為49.答案:497已知數(shù)列an滿足2an1anan2(nN*),它的前n項(xiàng)和為Sn,且a310,S672,若bnan30,設(shè)數(shù)
8、列bn的前n項(xiàng)和為Tn,求Tn的最小值解析:2an1anan2,an1anan2an1,故數(shù)列an為等差數(shù)列設(shè)數(shù)列an的首項(xiàng)為a1,公差為d,由a310,S672得,解得a12,d4.故an4n2,則bnan302n31,令即解得n,nN*,n15,即數(shù)列bn的前15項(xiàng)均為負(fù)值,T15最小數(shù)列bn的首項(xiàng)是29,公差為2,T15225,數(shù)列bn的前n項(xiàng)和Tn的最小值為225.8(20xx長(zhǎng)春模擬)在數(shù)列an中,an1an2n44(nN*),a123.(1)求an;(2)設(shè)Sn為an的前n項(xiàng)和,求Sn的最小值解析:(1)當(dāng)n1時(shí),a2a142,a123,a219,同理得,a321,a417.故a1,a3,a5,是以a1為首項(xiàng),2為公差的等差數(shù)列,a2,a4,a6,是以a2為首項(xiàng),2為公差的等差數(shù)列從而an(2)當(dāng)n為偶數(shù)時(shí),Sn(a1a2)(a3a4)(an1an)(2144)(2344)2(n1)44213(n1)4422n,故當(dāng)n22時(shí),Sn取得最小值為242.當(dāng)n為奇數(shù)時(shí),Sna1(a2a3)(a4a5)(an1an)a1(2244)2(n1)44a1224(n1)(44)2322(n1)22n.故當(dāng)n21或n23時(shí),Sn取得最小值243.綜上所述:當(dāng)n為偶數(shù)時(shí),Sn取得最小值為242;當(dāng)n為奇數(shù)時(shí),Sn取最小值為243.