《東營專版中考數(shù)學復習 第六章 圓 第二節(jié) 與圓有關的位置關系要題隨堂演練》由會員分享,可在線閱讀,更多相關《東營專版中考數(shù)學復習 第六章 圓 第二節(jié) 與圓有關的位置關系要題隨堂演練(4頁珍藏版)》請在裝配圖網上搜索。
1、
與圓有關的位置關系
要題隨堂演練
1.(2018眉山中考)如圖所示,AB是⊙O的直徑,PA切⊙O于點A,線段PO交⊙O于點C,連接BC,若∠P=36,則∠B等于( )
A.27 B.32 C.36 D.54
2.(2018宜昌中考)如圖,直線AB是⊙O的切線,C為切點,OD∥AB交⊙O于點D,點E在⊙O上,連接OC,EC,ED,則∠CED的度數(shù)為( )
A.30 B.35 C.40 D.45
3.(2018煙臺中考)如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124,點E在AD的延長線上,則∠CDE的度數(shù)為( )
2、
A.56 B.62 C.68 D.78
4.(2018大慶中考)在△ABC中,∠C=90,AB=10,且AC=6,則這個三角形的內切圓半徑為______.
5.(2018安徽中考)如圖,菱形ABOC的邊AB,AC分別與⊙O相切點D,E,若點D是AB的中點,則∠DOE=________.
6.(2018濟南中考)如圖,AB是⊙O的直徑,PA與⊙O相切于點A,BP與⊙O相交于點D,C為⊙O上一點,分別連接CB,CD,∠BCD=60.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
7.(2018聊城中考)如圖,在Rt△ABC中,∠C=
3、90,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.
(1)求證:AC是⊙O的切線;
(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.
參考答案
1.A 2.D 3.C
4.2 5.60
6.解:(1)如圖,連接AD.
∵∠BCD和∠BAD為同弧所對的圓周角,
∴∠BAD=∠BCD=60.
∵AB是⊙O的直徑,
∴∠ADB=90,
∴∠ABD=90-60=30.
(2)在Rt△ABD中,
∵AB=6,∠BAD=60,
∴BD=3.
∵AB是⊙O的直徑且AP是⊙O的切線,
∴AB⊥AP,
∴∠
4、PAB=90.
∵AB=6,∠ABD=30,
∴PB=4,
∴PD=PB-BD=.
7.(1)證明:如圖,連接OE.
∵OB=OE,
∴∠OBE=∠OEB.
∵BE平分∠ABC,
∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC.
又∵∠C=90,∴∠OEA=90,即AC⊥OE.
又∵OE是⊙O的半徑,∴AC是⊙O的切線.
(2)解:在△BCE與△BED中,
∵∠C=∠BED=90,∠EBC=∠DBE,
∴△BCE∽△BED,
∴=,即BC=.
∵BE=4,BD是⊙O的直徑,即BD=5,
∴BC=.
又∵OE∥BC,∴=.
∵AO=AD+2.5,AB=AD+5,
∴=,
解得AD=.
6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375