汽車倒泊防撞報警器的設(shè)計
《汽車倒泊防撞報警器的設(shè)計》由會員分享,可在線閱讀,更多相關(guān)《汽車倒泊防撞報警器的設(shè)計(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、編號 xx大學xx學院 畢業(yè)設(shè)計(論文) 相關(guān)資料 題目: 汽車倒泊防撞報警器的設(shè)計 系 專業(yè) 學 號: 學生姓名: 指導教師: (職稱: ) (職稱: ) xxxx年x月xx日 目 錄 一、畢業(yè)設(shè)計(論文)開題報告 二、畢業(yè)設(shè)計(論文)外文資料翻譯及原文 三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”
2、 四、實習鑒定表 xx大學xx學院 畢業(yè)設(shè)計(論文) 開題報告 題目: 汽車倒泊防撞報警器的設(shè)計 系 專業(yè) 學 號: 學生姓名: 指導教師: (職稱: ) (職稱: ) xxxx年x月xx日 課題來源 由于隨著科學技術(shù)和汽車工業(yè)的發(fā)展,許許多多的汽車安全裝置也得到大力的發(fā)展。汽車上面安裝防撞警報器能夠極大的方便司機的駕
3、駛,保障司機的安全,并且能在緊急情況下能自動剎車防止汽車之間的相撞。隨著人們安全意識的提高,在汽車上安裝防撞倒泊警報器將必不可少。 科學依據(jù)(包括課題的科學意義;國內(nèi)外研究概況、水平和發(fā)展趨勢;應(yīng)用前景等) 在當今社會,知識的實用性越來越得到重視。如何從海量的知識群中找出有用的知識并付諸實踐,這是很值得摸索的。 單片機的應(yīng)用日益普及,汽車的數(shù)量急劇增加,保障汽車駕駛?cè)藛T的安全也變得越來越重要了。目前在汽車警報器經(jīng)過20多年的發(fā)展 ,已經(jīng)歷了從開始的由單片機的蜂鳴器到由頻率控制聲音的急促報警到進一步的可視的智能化防撞報警系統(tǒng)。 汽車防撞裝置主要是通過車與障礙物之間的距離,車速信號的發(fā)射與
4、接收由信號控制系統(tǒng)既是利用單片機來控制車速。并發(fā)出不同頻率的報警信號。當車速與車距距離進入比較危險的狀態(tài)時,單片機自動控制發(fā)出緊急制動信號剎車,以此來達到防撞的目的。 由上述可知,汽車與障礙物的距離只有在危險距離狀態(tài)才有發(fā)生碰撞的可能,汽車防撞裝置系統(tǒng)的設(shè)計任務(wù)主要是采集汽車與障礙物的距離和本車車速,并與當時車速下安全警報距離與危險距離之間進行比較,判斷汽車與障礙物的距離是否安全。當達到的安全警報距離時能發(fā)出聲音報警。 研究內(nèi)容 在倒車時不斷測量汽車尾部與其后面障礙物的距離,并實時顯示其與障礙物之間的距離,在不同的距離范圍內(nèi)發(fā)出不同的報警信號,并且提高報警系統(tǒng)的穩(wěn)定性,以提高汽車倒車時的
5、安全性。本文設(shè)計了一種超聲波汽車倒泊防撞報警器,本報警器具有以下功能:最大測距4.9m,最小測距0.1m,實時顯示測得的距離;在不同的時間利用三個不同的超聲波傳感器進行測距,能夠有效的提高報警的穩(wěn)定性。在不同的危險距離范圍內(nèi)發(fā)出不同的頻率報警信號,駕駛員還可以根據(jù)個人需要調(diào)整設(shè)置報警距離。利用555來控制蜂鳴器的發(fā)聲頻率,直接運用單片機的I/O口控制報警器的工作。能夠大大降低軟件的復雜程度。該報警器與其它報警器相比具有功能多、硬件電路簡單、工作穩(wěn)定可靠等優(yōu)點。 擬采取的研究方法、技術(shù)路線、實驗方案及可行性分析 研究方法:理論聯(lián)系實際。 技術(shù)路線:理論聯(lián)系實際。 實驗方案:對比“
6、基于AT89C51單片機的超聲波防撞報警系統(tǒng)”跟“基于AT89C2051單片機的超聲波防撞報警系統(tǒng)”,前者性價比更高,所以選擇前者。 可行性分析:能夠理論聯(lián)系實際解決實際性的問題。此方案可行。 研究計劃及預期成果 初步討論基于AT89C51單片機來實現(xiàn)汽車倒泊防撞警報器的設(shè)計,分析了運用AT89C51和AT89C2051作為主控制器的兩種方案。重點介紹了AT89C51來實現(xiàn)的方案。對控制器,超聲波發(fā)射電路,超聲波接收電路,高低頻報警電路,LED顯示電路等模塊,以及運用單片機的I/O口如何具體的控制作了一定的說明。第四部分中,介紹系統(tǒng)的硬件框圖、軟件流程圖、中斷子程序流圖等,給出了具體
7、的軟件實現(xiàn)的方案。利用51 系列單片機設(shè)計的測距儀便于操作、讀數(shù)直觀。測距儀工作穩(wěn)定, 能滿足一般近距離測距的要求, 且成本較低、有良好的性價比。 特色或創(chuàng)新之處 考慮非常周全,不但提供了相應(yīng)的理論基礎(chǔ)知識,一定的電子電路圖,還為詳細的設(shè)計過程截取圖片 已具備的條件和尚需解決的問題 對于AT89C51單片機來實現(xiàn)汽車的倒泊防撞警報器尚取得了一定進展,但是還是有很多的不足之處: (1)應(yīng)該引入更加完善的顯示系統(tǒng),是司機能更加清楚的了解倒車時的情況。 (2)引入先進的語音模塊,通過人性化的語音報警信號。 (3)在緊急情況,應(yīng)該自動使汽車緊急剎車,防止汽車與障礙物之間相撞。 (4)應(yīng)
8、該對該警報器進行實際的測量,適當?shù)倪M行調(diào)節(jié),最大限度的減少誤差。 但是未來利用單片機來實現(xiàn)汽車的倒泊防撞警報器仍然有廣闊的前景,隨著單片機的功能日漸增強,能夠使報警更加人性化 指導教師意見 指導教師簽名: 年 月 日 教研室(學科組、研究所)意見 教研室主任簽
9、名: 年 月 日 系意見 主管領(lǐng)導簽名: 年 月 日 外文原文 Microelectronic Engineering South KoreabSchool of Information and Communication Engine
10、ering, College of Engineering, Inha University, Incheon 402-751, South Korea cDepartment of Electrical Engineering, College of Engineering, Choongang University,Seoul 156-756, South Korea.Available online 17 February 2006. Abstract We report on the fabrication of a polymer-based 2.5Gbps4 channel
11、optical interconnecting micro-module for optical printed circuit board (O-PCB) application. An optical waveguide array is used for optical transmission from vertical surface emitting laser (VCSEL) array to photodiode (PD) array and the built-in 45 waveguide mirrors are used for vertical coupling. Th
12、e optical waveguide array and the 45 mirrors are fabricated by UV imprint process in one-step. We fabricate microlensed VCSELs by micro-inkjetting method, which reduced radiation angle of VCSEL from 18 to 15 for better light coupling. We use solder ball array and pin array for alignment between O-PC
13、B and the electrical sub-boards with alignment mismatch below 10μm in x, y and z axis. The fabricated optical interconnection module transmits data at the rate of 2.5Gbps per channel. Keywords: Optical interconnection; Photonic integrated circuit; Micro-fabrication; UV embossing Article Outline 1
14、. Introduction 2. Fabrication of waveguide array and 45 mirrors 3. Microlensed VCSEL 4. Passive alignment 5. Optical interconnect modules 6. Conclusion Acknowledgements References 1. Introduction In the progresses of microprocessor and the input-output (IO) devices, the need for high
15、er bandwidth is rapidly growing. High speed interconnects are demanding next generation IO interconnects of highly increased data capacity because today’s IO interconnects are suffering bottleneck in bandwidth at the IO interface. Many attempts to increase the IO interconnect bandwidth have emerged
16、[1]. These attempts to extend electrical interconnect in more bandwidth manner are hard to solve fundamental problems facing the limitation of electrical properties over gigabits per channel data capacity. Operation of electrical interconnect schemes in gigabit regime will meet bottlenecks related
17、to the properties of electrical interconnects, including material properties, skew, jitter, EMI, and power consumption. To improve the performances of electrical interconnects, many efforts in signal processing techniques such as pre-emphasis, equalization, multilevel signaling, and coding, determin
18、istic jitter are needed to keep the trace of the bandwidth progress [2], [3] and [4]. Optical interconnection has a potential as an alternative approach to solve these problems because optical interconnection has many advantages over electrical interconnection such as high frequency, high bandwidth
19、, light, immunity to EMI, low skew, low jitter, no need of ground line, easy for impedance matching. To realize an optical interconnection module for O-PCB application, various photonic devices like light sources, detector arrays, and waveguide arrays are needed. The waveguides are interconnected t
20、o light sources and photo-detectors in a multiple array. The 45 waveguide mirrors are used for interconnecting VCSEL array–waveguide array/waveguide array–PD array. Once the O-PCB is designed and fabricated it has to be put together with the existing electrical circuits such as driving circuits for
21、micro-lasers and micro-detectors. Hence, we need micro-fabrication techniques for realizing optical interconnection module. We carried out micro-fabrication for optical interconnection module, which include design and fabrication of waveguides, coupling schemes and passive alignment. For this, we f
22、ocus on the following issues: One is the concurrent fabrication of a waveguide array and 45 mirrors in one-step in order to reduce the number of processing steps for low-cost production and another is a method to improve coupling efficiency between VCSEL array–waveguide array/waveguide array–PD arra
23、y including the passive alignment method between the different parts of the optical interconnection module. This paper demonstrates a micro-fabrication of optical interconnection module to be used for the realization of optical printed circuit board (O-PCB) [7] and [8]. 2. Fabrication of waveguide
24、array and 45 mirrors To use polymers as materials of the waveguide, embossing technique is used because of its relatively easy fabrication process. We fabricated polymer waveguides by UV embossing, which also involves fabrication of mold and replica. UV curable polymers are used as materials of wav
25、eguides and silicon mold is used to form waveguide patterns. For vertical coupling between VCSEL array and waveguide array and between the waveguide array and the PD array, we have to utilize mirror face at each end of the waveguide. To achieve this process, waveguide mold equipped with 45 faces at
26、each end of the mold is needed to form the vertical coupling structure in a single fabrication step. We made a 12 channel silicon waveguides mold, which has 45 mirror face at the ends of each waveguide. The dimension of the waveguide is 50μm width and 50μm height and the waveguide layout pitch is 25
27、0μm and the length is 7cm. With this mold, we performed UV embossing to make embedded type waveguides. To fabricate a 12 channel silicon waveguides mold, we etched silicon substrate with KOH-saturated isopropanol solutions in two steps: First is to make a vertical coupling path for the waveguides a
28、nd the other is to make 45 slope for the fabrication of mirror faces. First, a metallic mask is patterned on the silicon substrate and the silicon is vertically etched with KOH to form a waveguide pattern. In the next step to form 45 slope, a thin film of SiO2 is grown on patterned waveguide. And ph
29、otoresist is patterned at the end of the each waveguide structure and the ends of the waveguides are etched with KOH-saturated isopropanol solution to form 45 slope. After the SiO2 is stripped, the process of fabricating silicon mold equipped with 45 mirror is completed. We fabricated 12 channel em
30、bedded waveguide array by UV embossing using the prefabricated silicon mold. Waveguide fabrication process is shown in Fig. 1. UV curable polymer, which is used as cladding layer with index as 1.45 at 850nm wavelength, is dropped in the hollow cavity of a transparent substrate such as PDMS template.
31、 After silicon mold is pressed on template the UV light is irradiated. Silicon mold is detached and metallic film is coated on the 45 slope at the end of the waveguide to enhance coupling efficiency. And then the core polymer is dropped and a flat substrate is covered and pressed onto the core mater
32、ial which is also UV curable polymer with refractive index of 1.47 at 850nm wavelength. The UV light is irradiated once again. After the upper and lower templates are detached, we can get a complete array of polymer waveguides with built-in 45 mirror face at each end of the waveguide. View Within
33、 Article 3. Microlensed VCSEL One of the approaches to collimate the light from VCSEL arrays to the waveguide is the use of microlenses [9] and [10]. This method offers an increase in coupling efficiency and alignment tolerance. The volume of a polymer drop to fabricate these lenses is approxima
34、tely a few tens of picoliters. We are able to control the size of the microlenses by controlling the amount of the polymer drops and by controlling the viscosity of the materials. UV curable polymer is used for inkjetting, of which the viscosity and the refractive index are 300cps and 1.51 at 850nm
35、wavelength. Shows one of the microlensed VCSEL array and microlensed VCSEL has a microlens formed by the inkjetting method on the aperture of VCSEL. Inkjetting of UV curable resin on the VCSEL, lens material is aligned automatically on the aperture of VCSEL. Shows a view of the system where the ou
36、tput power from the microlensed VCSEL arrays is measured for their divergence. The divergence angle of the laser light from the VCSEL is shown to become narrower by using microlenses by the collimating effect pf the light from VCSEL. Because of the microlens, the higher order modes from the VCSEL ar
37、e suppressed by the cavity effect [10]. The emitted output from the VCSEL cavity is reflected back by microlens layer and is focused on the VCSEL cavity. During this process, the divergence angle of the VCSEL is reduced. In this case, the divergence angle of the VCSEL decreased from 18 to 15 after f
38、orming microlens. We conducted simulation study about the coupling efficiency between VCSEL and the waveguide by using the ray tracing method. As the divergence angle of the VCSEL was put into the calculation, the coupling efficiency of the VCSEL with microlens was found to be 0.44dB is 0.96dB which
39、 were better than that of VCSEL without microlens as ?1.40dB. Here dimension of waveguide is 50μm width, 50μm height and 7cm length. Refractive indices of the core and the cladding are 1.47 and 1.45, respectively, at 850nm wavelength. The distance between the VCSEL and the waveguide is 100μm.
40、 View Within Article 4. Passive alignment Solder ball array and pin array are placed on the electrical sub-boards to bond the O-PCB and the electrical sub-boards with high precision. For precision alignment, solder ball array in diameter of 450μm are used to thermally attach to the chip
41、 module. The solder ball array can be used for vertically alignment between the main O-PCB and the sub-boards within a mismatch below 10μm. The size of the solder ball is 500μm on average with standard error of 5μm. Two types of pin arrays are used. One array with diameter of 1mm is for align
42、ment and the other with diameter of 200μm is for electrical interconnection. The 1mm pin array is used for lateral alignment between the main O-PCB and the sub-boards. Because of the impedance match, the pin array of the electrical interconnection is limited. Similar to solder ball array alignment t
43、olerance of the pin array, about 10μm, depends on variation of diameter of pin. The size of the pin is 1mm on average with standard error of 10μm. We conducted simulation study about the coupling efficiency between the VCSEL-waveguide pair and the waveguide-PD pair by ray tracing. With the variatio
44、n of misalignment of x, y, and z axis we calculated the coupling efficiencies. From the calculation we obtained the total coupling loss within 2.30dB for the worst case of having position errors as large as 10μm in the x–z axis and in the y axis, respectively. For example, when the position misalign
45、ment is 10μm in the x–z axis and in the y axis, the coupling loss between VCSEL-waveguide is 1.59dB and the coupling loss between VCSEL-waveguide is 0.71dB. From the previous results, one can achieve the alignment between solder ball array and pin array can be achieved for alignment between main O-P
46、CB and sub-boards with precision as about 10μm in x–z axis and in y axis, respectively. Here the dimension of the waveguide is 50μm width and 50μm height. The refractive indices of the core and the cladding are 1.47 and 1.45, respectively, at 850nm wavelength. The distance between the VCSEL and the
47、waveguide is 100μm in the y axis. View Within Article 5. Optical interconnect modules We demonstrated the use of optical interconnection module for the assembly of O-PCB having four 2.5Gbps channels. The optical interconnection module, which includes E/O (electrical/optical) conversion
48、unit, is attached to the O-PCB with solder ball. The solder ball bonding is designed to accomplish the alignment between the waveguide structure and the electric circuit with high precision. The O-PCB prototype consists of main body of O-PCB and two electrical sub-boards. The main O-PCB has embedded
49、 waveguide which is the medium of optical interconnection. The two sub-boards are used for electrical-to-optical (E/O) or optical-to-electrical (O/E) conversion. The VCSEL array and the PD array are bonded to interconnect the waveguide to the bottom of the sub-board. The driving circuits are placed
50、on the opposite side to VCSEL array and PD array. The power, ground and other electrical control signal are supplied through the pin grid. The main O-PCB is placed on the E-PCB within a rectangular area of 70mm10mm at the center of the E-PCB.The overall planar size of the O-PCB is 200mm80mm and thic
51、kness is 1mm. The UV embossed waveguide including the 45 mirror for vertical coupling is inserted into the E-PCB and is glues with UV-epoxy. The sub-boards including VCSEL array/PD array are designed and fabricated using conventional analysis of microstrip line. View Within Article We fi
52、nally evaluated the quality of the optical interconnection module. First, we tested the waveguide array with 45 mirror face. The total losses of the waveguide include the propagation loss, the coupling loss, the 45 mirror loss and the insertion loss. And an average total loss is 7.9dB for a waveguid
53、e of 7cm length and their variation is within 1dB. For the worst case, in 12 channel, the total loss was 8.9dB. To demonstrate the data transmission performance, we utilized aligned optical interconnection module .A 2.5Gbps psudo-random binary system (PRBS) pattern were put in to the VCSEL driver v
54、ia the pin grid and the electrical output signal of the module were connected to a wide-band oscilloscope. An eye pattern of 2.5Gbps transmission was clearly observed without any significant distortion. View Within Article 6. Conclusion We performed micro-fabrication for optical inter
55、connection module. The optical waveguide array is fabricated by UV imprint process. The 45 mirrors faces are fabricated as an integrated part of the silicon waveguide mold for low-cost one-step processing. We fabricated microlensed VCSELs by micro-inkjetting method and found a significant increase i
56、n the improvement of the coupling efficiency reaching 0.96dB. Use of solder ball array and pin array for the alignment between the O-PCB and the sub-boards could be achieved with a precision below 10μm in the x–y axis and in the z axis. This passive alignment is designed for coupling loss induced by
57、 of misalignment within 2.3dB in total. We designed and fabricated a 2.5Gbps4 channels optical interconnecting micro-module for optical printed circuit board (O-PCB) application. This optical interconnection module transmits data at the rate of 2.5Gbps per channel. This work has been supported by t
58、he Engineering Research Center Grant No. R11-2003-022 for OPERA (Optics and Photonics Elite Research Academy). 中文譯文 運用于O-PCB的2.5Gbps x4通道的光學微模型裝置 光學和光子精英研究院(OPERA),仁川的仁荷大學是402-751,韓國學校信息與通訊工程,工程學院,仁荷大學,仁川402-751韓國中央大學電氣工程系,首爾是156-756,韓國在2006年2月17日可以在線。 摘要 我們報告的聚合物制造的2.5Gbps的 4通道光學互連微型光學印
59、刷電路板模塊(O型PCB)的應(yīng)用程序,光波導陣列用于從垂直表面的光傳輸發(fā)射激光器(VCSEL)的光電二極管(PD)的陣列和內(nèi)置的45 波導鏡使用垂直耦合。光波導陣列和45 鏡紫外壓印是工藝制造的一步,。我們通過微連接方法制造的微型VCSEL方法,VCSEL的角度從輻射18 減少到輻射15 是為了更好的光耦合。我們使用焊球陣列和針在O印刷電路板上并且電氣板對齊低于10微米的X,Y,Z軸配板。虛構(gòu)的光互連傳輸模塊在2.5Gbps速率下每通道的數(shù)據(jù)。 關(guān)鍵詞:光互連;光子集成電路,微加工,紫外壓印 大綱 1、導言 2、波導陣列的制備和45 鏡 3、顯微鏡的VCSEL 4、被動對準 5
60、、光互連模塊 6、結(jié)論 相關(guān)內(nèi)容 1.導言 在隨著微處理器和輸入輸出(I/O)的設(shè)備進步,對高帶寬的需求也迅速增長。高速互連所要求的新一代高的IO數(shù)據(jù)容量增加互連,因為今天的IO互連遭受帶寬瓶頸的是在IO接口。許多人試圖增加互連帶寬的IO出現(xiàn)在[1]。這些嘗試擴大更多的電氣互連帶寬的方式是難以解決的根本問題是對所面臨的每通道的數(shù)據(jù)的能力吉電性能的限制。 電氣互連千兆制度計劃的實行將滿足相關(guān)的電互連特性瓶頸,包括物質(zhì)的性質(zhì),歪斜,抖動,EMI和電消耗。為了提高電互連的特性,有許多在信號處理技術(shù)上的努力,如預加重,均衡,多層次的信號和編碼,確定性抖動需要保持帶寬方面的進展跟蹤,[2],
61、[3]和[4 ]。光學互連作為一種替代辦法來解決這些問題的潛力,光互連比電氣互連擁有很多優(yōu)勢,如高頻率,高帶寬,重量輕,對EMI的免疫,低歪曲率,低抖動,不需要地線,便于阻抗匹配等。 2、波導陣列的制備和45 鏡 為了實現(xiàn)光互連模在O-印刷電路板的應(yīng)用,各種光子器件像光源,探測器陣列和波導陣列是需要的。波導對于光源和多矩陣探測器照片都是相互關(guān)聯(lián)的。45 波導鏡用于互聯(lián)VCSEL陣列波導陣列/波導陣列/光探測器陣列。一旦O印刷電路板被設(shè)計和制作,它必須和現(xiàn)有的電力線路一起,如駕駛微型激光器和微型探測器電路。因此我們需要實現(xiàn)光互連模塊的微加工技術(shù)。 我們進行了微型光互連模塊制造,其中包括
62、設(shè)計和制造的波導,耦合模式和被動的調(diào)整。為此我們著眼于以下問題:一個是波導陣列并行制造和45 鏡,減少加工步驟、低成本生產(chǎn)。另一種是一種方法,以改善VCSEL陣列之間的耦合效率波導陣列/波導陣列光探測器陣列,包括之間的光互連模塊的不同部分被動調(diào)整的方法。本文演示了光互連微加工單元,用于印刷電路板的光學實現(xiàn)使用(O型印刷電路板)[7]和[8]。 要使用作為波導材料的聚合物,壓花技術(shù)被使用是因為它的制造工藝相對簡單。我們是制造紫外壓印聚合物光波導,涉及模具制造和副本。紫外光固化聚合物用作波導和硅模具材料是用于形成波導模式。之間的VCSEL陣列和波導陣列和縱向耦合波導之間的數(shù)組和局部放電陣列,我們
63、不得不利用每個波導鏡面的尾部。為了實現(xiàn)這一過程,波導45 模具裝備是面臨形成所必需的一個步驟,制造垂直耦合結(jié)構(gòu)是在每個模具底部。我們提出了12頻道硅波導模具,它在波導兩端各有45 鏡面。波導的尺寸為50微米寬,50微米的高度和波導布局間距為250微米,長度為7厘米。有了這個模具,我們進行紫外壓印使嵌入式波導。編造一個12通道硅波導模,我們用KOH蝕刻硅襯底飽和異丙醇兩個步驟解決方案:首先是彌補波導垂直耦合路徑,另一個是為彌補制造45 坡度的鏡面。首先,金屬面具圖案的硅襯底上,硅是用KOH垂直蝕刻形成波導金屬面具圖案的硅基底上。下一步形成45度的斜坡,SiO2薄膜圖案在波導方式上增長。圖案被波導
64、結(jié)構(gòu)仿造和在波導的兩端被蝕刻用KOH -異丙醇溶液飽和,形成45度的斜坡。二氧化硅被剝離后,硅的模具制造45 鏡配備進程完成。 我們用紫外壓花預制磨具硅制造12路嵌入式紫外波導陣列。波導制造過程如圖 1。紫外光固化聚合物,這是作為包層的指數(shù),為1.45波長850納米層,是在一個透明的基板空洞腔下降,例如硅橡膠模板。在硅片上按下模具模板的紫外線燈照射。模具硅和金屬膜分離是在45度斜坡,提高了耦合效率。然后核心聚合物下降,一個平面基板上覆蓋和芯材。紫外線與固化聚合物折射率1.47在波長為850 nm。在紫外燈照射一次,經(jīng)過上下模板分離,我們可以在45 鏡面的內(nèi)置聚合物光波導完成數(shù)組在每個波導結(jié)束
65、。 3、Microlensed VCSEL 方法之一瞄準從VCSEL陣列光的波導使用的微透鏡,是[9]和[10]。這種方法提供了一個在耦合效率和一致性公差調(diào)整。在聚合物滴體積編造這些鏡頭是大約數(shù)萬不等。我們能夠控制通過控制聚合物的下降數(shù)額和通過控制材料粘度大小的微型鏡頭。紫外光固化聚合物用于inkjetting,其粘度和折射率是在850納米300 CPS和1.51波長。所示之一microlensed VCSEL陣列和microlensed的VCSEL具有由對VCSE孔徑inkjetting方法形成了微透鏡。紫外光固化樹脂Inkjetting上的VCSEL,鏡片材料是一致的自動光圈的VCS
66、EL。其中從microlensed VCSEL陣列輸出功率來衡量他們的分歧。在從的VCSEL激光發(fā)散角顯示成為使用的影響,從狹義的VCSEL光透鏡。由于透鏡,從VCSEL高階模式鎮(zhèn)壓腔效應(yīng)(10)。從排放的VCSEL腔輸出反射回來的微透鏡層是根據(jù)的VCSEL腔。在此過程中,發(fā)散角的VCSEL減少。在這種情況下,在下降的VCSEL發(fā)散角從18 到15 后形成微透鏡。我們進行模擬對耦合效率之間的VCSEL研究,通過使用射線跟蹤法波導。作為發(fā)散角的VCSEL投入了計算,在與微透鏡的VCSEL耦合效率被發(fā)現(xiàn)0.44分貝是0.96分貝。其中優(yōu)于的VCSEL,沒有為-1.40分貝微透鏡。這里的波導尺寸為50微米寬,50微米高,長7厘米。折射率核心和包層的1.47和1.45,分別在波長為850 nm。之間的VCSEL和波導的距離為100微 4。被動對準 焊料球陣列和針陣列放置在以結(jié)合的
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。