《初中數(shù)學競賽輔導講義及習題解答 第9講 坐標平面上的直線》由會員分享,可在線閱讀,更多相關(guān)《初中數(shù)學競賽輔導講義及習題解答 第9講 坐標平面上的直線(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第九講 坐標平面上的直線一般地,若 (、是常數(shù),),則叫做的一次函數(shù),它的圖象是一條直線,函數(shù)解析式 式中的系數(shù)符號,決定圖象的大致位置及單調(diào)性(隨的變化情況)。如圖所示: 一次函數(shù)、二元一次方程、直線有著深刻的聯(lián)系,任意一個一次函數(shù)都可看作是關(guān)于、的一個二元一次方程;任意一個關(guān)于、的二元一次方程,可化為形如 ()的函數(shù)形式。坐標平面上的直線可以表示一次函數(shù)與二元一次方程,而利用方程和函數(shù)的思想可以研究直線位置關(guān)系,求坐標平面上的直線交點坐標轉(zhuǎn)化為解由函數(shù)解析式聯(lián)立的方程組?!纠}求解】【例1】 如圖,在直角坐標系中,直角梯形OABC的頂點A(3,0)、B(2,7),P為線段OC上一點,若過B
2、、P兩點的直線為,過A、P兩點的直線為,且BPAP,則= 。思路點撥 解題的關(guān)鍵是求出P點坐標,只需運用幾何知識建立OP的等式即可。 【例2】 設(shè)直線 (為自然數(shù))與兩坐標軸圍成的三角形面積為 (1,2,2000),則S1+S2+S2000的值為( ) A1 B C D 思路點撥 求出直線與軸、軸交點坐標,從一般形式入手,把用含的代數(shù)式表示?!纠?】 某空軍加油飛機接到命令,立即給另一架正在飛行的運輸飛機進行空中加油在加油過程中,設(shè)運輸飛機的油箱余油量為Q1噸,加油飛機的加油油箱余油量為Q2噸,加油時間為分鐘,Q1、Q2與之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問題: (1)加油飛機的加油油箱
3、中裝載了多少噸油?將這些油全部加給運輸飛機需多少分鐘?2 / 12 (2)求加油過程中,運輸飛機的余油量Q1 (噸)與時間 (分鐘)的函數(shù)關(guān)系式; (3)運輸飛機加完油后,以原速繼續(xù)飛行,需10小時到達目的地,油料是否夠用?說明理由 思路點撥 對于(3),解題的關(guān)鍵是先求出運輸飛機每小時耗油量。注:(1)當自變量受限制時,一次函數(shù)圖象可能是射線、線段、折線或點,一次函數(shù)當自變量取值受限制時,存在最大值與最小值,根據(jù)圖象求最值直觀明了。 (2)當一次函數(shù)圖象與兩坐標軸有交點時,就與直角三角形聯(lián)系在一起,求兩交點坐標并能發(fā)掘隱含條件是解相關(guān)綜合題的基礎(chǔ)?!纠?】 如圖,直線與軸、y軸分別交于點A、
4、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角ABC,BAC90,如果在第二象限內(nèi)有一點P(,),且ABP的面積與A ABC的面積相等,求的值 思路點撥 利用SABPSABC建立含的方程,解題的關(guān)鍵是把SABP表示成有邊落在坐標軸上的三角形面積和、差。注:解函數(shù)圖象與面積結(jié)合的問題,關(guān)鍵是把相關(guān)三角形用邊落在坐標軸的其他三角形面 積來表示,這樣面積與坐標就建立了聯(lián)系 【例5】 在直角坐標系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)為頂點的正方形,設(shè)它在折線上側(cè)部分的面積為S,試求S關(guān)于的函數(shù)關(guān)系式,并畫出它們的圖象。思路點撥 先畫出符合題意的圖形,然后對不確定折線及其
5、中的字母的取值范圍進行分類討論,的取值決定了正方形在折線上側(cè)部分的圖形的形狀。注:我們把有自變量或關(guān)于自變量的代數(shù)式包含在絕對值符號在內(nèi)的一類函數(shù)稱為絕對值函數(shù)去掉絕對值符號,把絕對值函數(shù)化為分段函數(shù),這是解絕對值的一般思路。學歷訓練1一次函數(shù)的自變量的取值范圍是-36,相應函數(shù)值的取值范圍是-5-2,則這個函數(shù)的解析式為 2已知,且,則關(guān)于自變量的一次函數(shù)的圖象一定經(jīng)過第 象限 3一家小型放影廳的盈利額(元)與售票數(shù)之間的關(guān)系如圖所示,其中超過150人時,要繳納公安消防保險費50元試根據(jù)關(guān)系圖回答下列問題:(1)當售票數(shù)滿足0150時,盈利額 (元)與之間的函數(shù)關(guān)系式是 。(2)當售票數(shù)滿足
6、150x200時,盈利額(元)與之間的函數(shù)關(guān)系式是 。(3)當售票數(shù)為 時,不賠不賺;當售票數(shù)滿足 時,放影廳要賠本;若放影廳要獲得最大利潤200元,此時售票數(shù)應為 (4)當售票數(shù)滿足 時,此時利潤比150時多 4如圖,在平行四邊形ABCD中,AC4,BD6,P是BD上的任一點,過P作EFAC,與平行四邊形的兩條邊分別交于點E,F(xiàn),設(shè)BP=,EF=,則能反映與之間關(guān)系的圖象是( ) 5下列圖象中,不可能是關(guān)于的一次函數(shù)的圖象是( )6小李以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完銷售金額與賣瓜的千克數(shù)之間關(guān)系如圖所示,
7、那么小李賺了( )A32元 B36元 C 38元 D44元 7某醫(yī)藥研究所開發(fā)了一種新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時時血液中含藥量最高,達每毫升6微克(1微克10-3毫克),接著逐步衰減,10小時時血液中含藥量為每毫升3微克,每毫升血液中含藥量 (微克)隨時間(小時)的變化如圖所示,當成人按規(guī)定劑量服用后。 (1)分別求出2和2時與之間的函數(shù)關(guān)系式; (2)如果每毫升血液中含藥量為4微克或4微克以上時在治療疾病時是有效的,那么這個有效時間是多長?8如圖,正方形ABCD的邊長是4,將此正方形置于平面直角坐標系O中,使AB在軸的正半軸上,A點的坐標是(1,0)(1)
8、經(jīng)過C點的直線與軸交于點E,求四邊形AECD的面積;(2)若直線經(jīng)過點E且將正方形ABCD分成面積相等的兩部分,求直線的方程,并在坐標系中畫出直線 9如圖,已知點A與B的坐標分別為(4,0),(0,2)(1)求直線AB的解析式。 (2)過點C(2,0)的直線(與軸不重合)與AOB的另一邊相交于點P,若截得的三角形與AOB相似,求點P的坐標 10如圖,直線與軸、y軸分別交于P、Q兩點,把POQ沿PQ翻折,點O落在R處,則點R的坐標是 11在直角坐標系O中,軸上的動點M(,0)到定點P(5,5)、Q(2,1)的距離分別為MP和MQ,那么,當MP+MQ取最小值時,點M的橫坐標為 。 12如圖,在直角
9、坐標系中,矩形OABC的頂點B的坐標為(15,6),直線恰好將矩形OABC分成面積相等的兩部分,那么b 。13如果條直線經(jīng)過不同的三點A(a,b),B(b,a),C(a-b,b-a),那么,直線經(jīng)過( )象限。 A二、四 B、三 C二、三、四 D一、三、四14一個一次函數(shù)的圖象與直線平行,與軸、軸的交點分別為A、B,并且過點(一l,25),則在線段AB(包括端點A、B)上,橫、縱坐標都是整數(shù)的的點有( ) A4個 B5個 C 6個 D7個 15點A(一4,0),B(2,0)是坐標平面上兩定點,C是的圖象上的動點,則滿足上述條件的直角ABC可以畫出( ) A 1個 B 2個 C3個 D4個16有
10、個附有進、出水管的容器,每單位時間進、出的水量都是一定的,設(shè)從某時刻開始5分鐘內(nèi)只進不出水,在隨后的15分鐘內(nèi)既進水又出水,得到時間 (分)與水量(升)之間的關(guān)系如下圖若20分鐘后只出水不進水,求這時(即20)y與之間的函數(shù)關(guān)系式。17如圖,AOB為正三角形,點B坐標為(2,0),過點C(一2,0)作直線交AO于D,交AB于E,且使ADE和DCO的面積相等,求直線的函數(shù)解析式。 18在直角坐標系中,有四個點A(一8,3),B(一4,5),C(0,),D(,0),當四邊形ABCD的周長最短時,求的值 19轉(zhuǎn)爐煉鋼產(chǎn)生的棕紅色煙塵會污染大氣,某裝置可通過回收棕紅色煙塵中的氧化鐵從而降低污染,該裝置
11、的氧化鐵回收率與其通過的電流有關(guān)現(xiàn)經(jīng)過試驗得到下列數(shù)據(jù):通過電流強度(單位A)11.71.92.12.4氧化鐵回收率(%)7579888778如圖建立直角坐標系,用橫坐標表示通過的電流強度,縱坐標表示氧化鐵回收率。(1) 將試驗所得數(shù)據(jù)在右圖所給的直角坐標系中用點表示(注:該圖中坐標軸的交點代表點(1,70);(2) 用線段將題(1)所畫的點從左到右順次連接,若用此圖象來模擬氧化鐵回收率y關(guān)于通過電流x的函數(shù)關(guān)系,試寫出該函數(shù)在 1.7x2.4 時的表達式;(3) 利用題(2)所得函數(shù)關(guān)系,求氧化鐵回收率大于85%時,該裝置通過的電流應該控制的范圍(精確到0.1A)。 20如圖,直線OC、BC的函數(shù)關(guān)系式分別為和,動點P(x,0)在OB上移動(03),過點P作直線與軸垂直。(1)求點C的坐標;(2)設(shè)OBC中位于直線左側(cè)部分的面積為S,寫出S與之間的函數(shù)關(guān)系式;(3)在直角坐標系中畫出(2)中的函數(shù)的圖象;(4)當為何值時,直線平分OBC的面積? 參考答案 希望對大家有所幫助,多謝您的瀏覽!