高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)

上傳人:文*** 文檔編號:238295329 上傳時間:2023-12-29 格式:DOC 頁數(shù):3 大?。?1.50KB
收藏 版權申訴 舉報 下載
高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)_第1頁
第1頁 / 共3頁
高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)_第2頁
第2頁 / 共3頁
高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)_第3頁
第3頁 / 共3頁

最后一頁預覽完了!喜歡就下載吧,查找使用更方便

5 積分

下載資源

資源描述:

《高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)》由會員分享,可在線閱讀,更多相關《高考數(shù)學總復習 第二章第8課時 函數(shù)與方程 課時闖關(含解析)(3頁珍藏版)》請在裝配圖網上搜索。

1、 一、選擇題 1.(2012·蘭州質檢)若函數(shù)f(x)=ax+b的零點為2,那么函數(shù)g(x)=bx2-ax的零點是(  ) A.0,2 B.0, C.0,- D.2, 解析:選C.由已知f(2)=2a+b=0可得b=-2a,則g(x)=-2ax2-ax,令g(x)=0可得x=0或x=-,故g(x)的零點是0或-,應選C. 2.(2012·石家莊調研)函數(shù)y=f(x)在區(qū)間[-2,2]上的圖象是連續(xù)的,且方程f(x)=0在(-2,2)上僅有一個實根0,則f(-1)·f(1)的值(  ) A.大于0 B.小于0 C.等于0 D.無法確定 解析:選D.由題意,知

2、f(x)在(-1,1)上有零點0,該零點可能是變號零點,也可能是不變號零點,∴f(-1)·f(1)符號不定,如f(x)=x2,f(x)=x. 3.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為(  ) x -1 0 1 2 3 ex 0.37 1 2.72 7.39 20.09 x+2 1 2 3 4 5 A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 解析:選C.記f(x)=ex-x-2,由表格可知,f(1)<0,f(2)>0,故原方程一個根所在的區(qū)間為(1,2).所以選C. 4.函數(shù)f(x)=2x-

3、x-的一個零點所在的區(qū)間是(  ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:選B.觀察函數(shù)y=2x和函數(shù)y=x+的圖象可知,函數(shù)f(x)=2x-x-有一個大于零的零點,又f(1)=1-<0,f(2)=2->0,根據(jù)函數(shù)零點的存在性定理知函數(shù)的一個零點在區(qū)間(1,2)上. 5.若函數(shù)f(x)=2ax2-x-1在(0,1)內恰有一個零點,則a的取值范圍是(  ) A.(-1,1) B.[1,+∞) C.(1,+∞) D.(2,+∞) 解析:選C.當a=0時,函數(shù)的零點是x=-1;當a≠0時,若Δ>0,f(0)·f(1)<0,則a>1;若Δ

4、=0,即a=-,函數(shù)的零點是x=-2,故選C. 二、填空題 6.用二分法求方程x3-2x-5=0在區(qū)間[2,3]內的實根,取區(qū)間中點x0=2.5,那么下一個有根區(qū)間是________. 解析:由計算器可算得f(2)=-1,f(3)=16,f(2.5)=5.625,f(2)·f(2.5)<0,所以下一個有根區(qū)間為(2,2.5). 答案:(2,2.5) 7.若f(x)=則函數(shù)g(x)=f(x)-x的零點為________. 解析:即求f(x)=x的根, ∴或 解得x=1+,或x=1. ∴g(x)的零點為x=1+,或x=1. 答案:x=1+,或x=1 8.若函數(shù)f(x)=x2+

5、ax+b的兩個零點是-2和3,則不等式af(-2x)>0的解集是________. 解析:∵f(x)=x2+ax+b的兩個零點是-2,3. ∴-2,3是方程x2+ax+b=0的兩根, 由根與系數(shù)的關系知, ∴, ∴f(x)=x2-x-6. ∵不等式af(-2x)>0, 即-(4x2+2x-6)>0?2x2+x-3<0, 解集為{x|-<x<1}. 答案:{x|-<x<1} 三、解答題 9.判斷下列函數(shù)在給定區(qū)間上是否存在零點. (1)f(x)=x3-x-1,x∈[-1,2]; (2)f(x)=log2(x+2)-x,x∈[1,3]. 解:(1)f(-1)=-1<0,

6、f(2)=5>0,f(-1)f(2)<0, 故f(x)=x3-x-1在x∈[-1,2]上存在零點. (2)f(1)=log2(1+2)-1=log23-1>log22-1=0, f(3)=log2(3+2)-3=log25-3<log28-3=0, 所以f(1)f(3)<0,故f(x)=log2(x+2)-x在x∈[1,3]上存在零點. 10.已知函數(shù)f(x)=x3-x2++.求證:存在x0∈(0,),使f(x0)=x0. 證明:令g(x)=f(x)-x. ∵g(0)=,g()=f()-=-, ∴g(0)·g()<0. 又函數(shù)g(x)在[0,]上連續(xù), 所以存在x0∈(0,

7、),使g(x0)=0. 即f(x0)=x0. 11.是否存在這樣的實數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上與x軸恒有一個交點,且只有一個交點?若存在,求出a的范圍;若不存在,說明理由. 解:若實數(shù)a滿足條件,則只需f(-1)·f(3)≤0即可. f(-1)·f(3)=(1-3a+2+a-1)·(9+9a-6+a-1)=4(1-a)(5a+1)≤0.所以a≤-或a≥1. 檢驗:(1)當f(-1)=0時,a=1. 所以f(x)=x2+x. 令f(x)=0,即x2+x=0, 得x=0或x=-1. 方程在[-1,3]上有兩根,不合題意,故a≠1. (2)當f(3)=0時,a=-. 此時f(x)=x2-x-. 令f(x)=0,即x2-x-=0, 解之,得x=-或x=3. 方程在[-1,3]上有兩根,不合題意, 故a≠-. 綜上所述,a<-或a>1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!