雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)

上傳人:sha****en 文檔編號:22137933 上傳時間:2021-05-21 格式:PPT 頁數(shù):26 大?。?.47MB
收藏 版權(quán)申訴 舉報 下載
雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)_第1頁
第1頁 / 共26頁
雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)_第2頁
第2頁 / 共26頁
雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)》由會員分享,可在線閱讀,更多相關(guān)《雙曲線的簡單幾何性質(zhì)優(yōu)質(zhì)課件(2課時)(26頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1 2.2.2 雙 曲 線 的 簡單 幾 何 性 質(zhì)高 二 數(shù) 學(xué) 選 修 1-1 第二章 圓錐曲線與方程 2 教 學(xué) 目 標 :1.通 過 方 程 , 研 究 雙 曲 線 的 性 質(zhì) , 理 解 雙曲 線 的 范 圍 、 對 稱 性 及 對 稱 軸 , 對 稱 中心 、 離 心 率 、 頂 點 、 漸 近 線 的 概 念 ;2.根 據(jù) 條 件 , 求 出 表 示 曲 線 的 方 程 ;3.掌 握 直 線 與 雙 曲 線 的 位 置 關(guān) 系 3 復(fù) 習(xí) 回 顧 : 雙 曲 線 的 標 準 方 程 :形 式 一 : ( 焦 點 在 x軸 上 , ( -c, 0) 、 ( c, 0) ))0,0(

2、12222 babyax 1F 2F 形 式 二 :( 焦 點 在 y軸 上 , ( 0, -c) 、 ( 0, c) ) 其 中 )0,0(1 2222 babxay 1F 2F222 bac 雙 曲 線 的 圖 象 特點 與 幾 何 性 質(zhì) 是 怎樣 的 ? 現(xiàn)在就用方程來探究一下!類似于橢圓幾何性質(zhì)的研究. 2、 對 稱 性 一 、 研 究 雙 曲 線 的 簡 單 幾 何 性 質(zhì)1、 范 圍2 2 22 1, x x aax a x a 即關(guān) 于 x軸 、 y軸 和 原 點 都 對 稱 .x軸 、 y軸 是 雙 曲 線 的 對 稱 軸 , 原 點 是 對 稱 中 心 ,又 叫 做 雙 曲

3、 線 的 中 心 . xyo-a a(-x,-y)(-x,y) (x,y)(x,-y)2 22 2 1( 0, 0)x y a ba b (下 一 頁 )頂 點 1A 2A 5 3、 頂 點( 1) 雙 曲 線 與 對 稱 軸 的 交 點 , 叫 做 雙 曲 線 的 頂 點 xyo-b 1B2Bb1A 2A-a a如 圖 , 線 段 叫 做 雙 曲 線的 實 軸 , 它 的 長 為 2a,a叫 做實 半 軸 長 ; 線 段 叫 做 雙曲 線 的 虛 軸 , 它 的 長 為 2b,b叫 做 雙 曲 線 的 虛 半 軸 長 .2A1A 2B1B( 2)(3)實 軸 與 虛 軸 等 長 的 雙 曲

4、線 叫 等 軸 雙 曲 線 .2 2 ( 0)x y m m (下 一 頁 )漸 近 線 6 4、 漸 近 線 1A 2A1B2B xyo ab利 用 漸 近 線 可 以 較 準 確 的 畫 出雙 曲 線 的 草 圖(2)漸 近 線 對 雙 曲 線 的 開 口 的 影 響(3) 動 畫 演 示 點 在 雙 曲 線 上 情 況 雙 曲 線 上 的 點 與 這 兩 直 線 位 置 有 什 么 關(guān) 系 呢 ?(動 畫 演 示 情 況 )(下 一 頁 )離 心 率如 何 記 憶 雙 曲 線 的 漸 近 線 方 程 ? 7 5、 離 心 率e是 表 示 雙 曲 線 開 口 大 小 的 一 個 量 ,e

5、越 大 開 口 越 大(動 畫 演 示 ) ca0 e 12 2 2 2( ) 1 1b c a c ea a a ( 4) 等 軸 雙 曲 線 的 離 心 率 e= ? 2 , 8 小 結(jié) xyo ax或 ax ay ay或 )0,( a ),0( a xaby xbay ace )( 222 bac 其 中關(guān) 于坐 標軸 和原 點都 對稱 性質(zhì)雙曲線 )0,0( 12222 ba byax )0,0( 12222 ba bxay 范 圍 對 稱 性 頂 點 漸 近 線 離 心 率圖 象 9 1、 練 習(xí) |x| 0,24 0,6 3 24e xy 424 618|x|3( 3,0) 0,1

6、03 10ey= 3x 44|y|2(0, 2)2e 22,0 xy 1014|y|5(0, 5) 74,0 574e xy 7528 24 10 第 2課 時 11 例1: 求雙曲線 9y2-16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程.可得實半軸長a=4,虛半軸長b=3焦點坐標為(0,-5)、(0,5)45 ace離心率 xy 34 線 方 程 為漸 近解 : 把 方 程 化 為 標 準 方 程 2 2 116 9y x 12 例 2: . 4516線和焦點坐標程,并且求出它的漸近出雙曲線的方軸上,中心在原點,寫焦點在,離心率已知雙曲線頂點間的距離是x e 思考:一個

7、雙曲線的漸近線的方程為: ,它的離心率為 . xy 43 5 54 3或 xy 43漸 近 線 方 程 為)0,10(),0,10( 21 FF 焦 點 13664 22 yx解 : 22 22 1+c a b be a a a 練 習(xí) 2 2 14x y 的 漸 近 線 方 程 為 : 2xy 2 2 44x y 的 漸 近 線 方 程 為 : 2 2 14x y 的 漸 近 線 方 程 為 : 的 漸 近 線 方 程 為 : 2 2 44x y 2xy 2xy 2xy 你 發(fā) 現(xiàn) 了 什 么 ?求 雙 曲 線 的 漸 近 線 方 程 方 法 : 定 義 法 和 方 程 法 14 2 23

8、1 32 39 16x y 例 : 求 與 雙 曲 線 有 相 同 漸 近 線 , 且 過 點 ,的 雙 曲 線 方 程 ; 2 22 22 22 2 1 0 x ya bx ya b 結(jié) 論 :與 雙 曲 線 有 相 同 的 漸 近 線 的雙 曲 線 方 程 為 :9 129 16 得 , 2 2 19 16 4x y 故 所 求 雙 曲 線 方 程 為 2 2 19 164 4x y 即14 解 得 2 2 39 16x y 解 : 設(shè) 所 求 雙 曲 線 方 程 為 , 代 入 ( -3,2 ) 15 2 2 2 22 2 2 2A 1A 0 AB 0 ,AA =0 =x B yx B

9、yx By y xB 與 雙 曲 線 有 相 同 的 漸 近 線的 雙 曲 線 方 程 為 : ,他 們 的 漸 近 線結(jié) 論 2: 方 程 為 : ( 或 ) 2 2 2 2 0A =0A xx B By y 若 雙 曲 線 漸 近 線 方 程 為 : 則的 雙 曲結(jié) 論 3: ,設(shè) 為線 方 程 可 : 。 2 21: 2 .x y 練 習(xí) 求 與 雙 曲 線 -2 有 公 共 漸 近 線 ,且 過 點 M(2,-2)的 雙 曲 線 方 程 2 2 12 4y x 16 93 0 12x y 變 式 1:求 漸 近 線 方 程 為 2 且 過 點 , 的雙 曲 線 方 程 。 2 2 11

10、8 8x y P60例 3: ( 理 科 課 本 ) 例 623y x思 考 : 若 將 漸 近 線 改 為 呢 ? P61練 習(xí) : ( 理 科 課 本 ) 第 5題 17 P60 例 4:( 課 本 ) 例 5雙 曲 線 第 二 定 義P*閱 讀 同 步 ,你 能 總 給 出 雙 曲 線 新 的 定 義 嗎 ? 18 雙 曲 線 第 二 定 義 :P F F( 1), P l le e 動 點 到 定 點 的 距 離 和 它 到 一 條 直 線 ( )的 距 離 的 比 是 常 數(shù) 點 的 軌 跡 是 雙 曲 線 。 2F: al x ec注 :定 點 叫 做 焦 點 ;定 直 線 叫 準

11、 線 ; 叫 離 心 率 。2212 ;ax x cac ) 焦 點 在 軸 上 : 準 線 ;) 焦 點 在 y軸 上 : 準 線 y 19 20P54, A 3,4,B,1 小 結(jié) : 本 節(jié) 課 討 論 了 雙 曲 線 的 簡 單 幾 何 性 質(zhì) : 范 圍 ,對 稱 性 , 頂 點 , 離 心 率 , 漸 近 線 , 請 同 學(xué) 們熟 練 掌 握 。作 業(yè) 21 12 byax 222 ( a b 0) 12222 byax ( a 0 b 0) 222 ba (a 0 b 0) c222 ba (a b 0) c 橢 圓 雙 曲 線方 程a b c關(guān) 系圖 象 y XF1 0 F2M

12、 XY0F1 F2 p小 結(jié) 22漸 近 線離 心 率 頂 點對 稱 性范 圍 準 線 |x|a,|y|b |x| a, yR對 稱 軸 : x軸 , y軸 對 稱 中 心 : 原 點 對 稱 軸 : x軸 , y軸 對 稱 中 心 : 原 點( -a,0) (a,0) (0,b) (0,-b)長 軸 : 2a 短 軸 : 2b (-a,0) (a,0)實 軸 : 2a虛 軸 : 2be = ac ( 0 e 1 ) ace= (e1)無 y = ab x?cax 2 23 謝謝光臨 ! 24 共 軛 雙 曲 線 定 義 :以 已 知 雙 曲 線 的 虛 軸 為 實 軸 ,實 軸 為 虛 軸

13、的 雙曲 線 叫 原 雙 曲 線 的 共 軛 雙 曲 線 , 則 (1)雙 曲 線 的 共 軛 雙 曲 線 方 程即 把 雙 曲 線 方 程 中 的 常 數(shù) 項 1改 為 -1就 得 到 了它 的 共 軛 雙 曲 線 方 程 。(2)雙 曲 線 和 它 的 共 軛 雙 曲 線 有 共 同 的 漸 近 線 ; 反 之 不 成 立 。2 22 2 1x ya b 2 22 2 1y xb a 25 證 明 :(1)設(shè) 已 知 雙 曲 線 的 方 程 是 : 2 22 2 1x ya b 則 它 的 共 軛 雙 曲 線 方 程 是 : 2 22 2 1y xb a 漸 近 線 為 : 0 x ya

14、b 漸 近 線 為 : 0y xb a 可 化 為 : 0 x ya b 故 雙 曲 線 和 它 的 共 軛 雙 曲 線 有 共 同 的 漸 近 線(2)設(shè) 已 知 雙 曲 線 的 焦 點 為 F(c,0),F(-c,0)它 的 共 軛 雙 曲 線 的 焦 點 為 F 1(0,c), F2(0,-c), 2 2c a b 2 2c a b c=c所 以 四 個 焦 點 F1, F2, F3, F4在 同 一 個 圓 2 2 2 2 .x y a b 2=c上問 :有 相 同 漸 近 線 的 雙 曲 線 方 程 一 定 是 共 軛 雙 曲 線 嗎 ? 26 證 明 :(1)設(shè) 已 知 雙 曲 線

15、 的 方 程 是 : 12222 byax則 它 的 共 軛 雙 曲 線 方 程 是 : 12222 axby漸 近 線 為 : 0 byax漸 近 線 為 : 0 axby 可 化 為 : 0 byax故 雙 曲 線 和 它 的 共 軛 雙 曲 線 有 共 同 的 漸 近 線(2)設(shè) 已 知 雙 曲 線 的 焦 點 為 F(c,0),F(-c,0)它 的 共 軛 雙 曲 線 的 焦 點 為 F 1(0,c), F2(0,-c), 22 bac 22 bac c=c所 以 四 個 焦 點 F1, F2, F3, F4在 同 一 個 圓 .2222 上bayx 問 :有 相 同 漸 近 線 的 雙 曲 線 方 程 一 定 是 共 軛 雙 曲 線 嗎 ?

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!