《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 專題五 立體幾何 第1講 空間幾何體課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪總復(fù)習(xí)與增分策略 專題五 立體幾何 第1講 空間幾何體課件 文(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講空間幾何體專題五立體幾何 欄目索引 高考真題體驗(yàn)1 熱點(diǎn)分類突破2 高考押題精練3 高考真題體驗(yàn)1.(2015江蘇)現(xiàn)有橡皮泥制作的底面半徑為5,高為4的圓錐和底面半徑為2,高為8的圓柱各一個(gè).若將它們重新制作成總體積與高均保持不變,但底面半徑相同的新的圓錐和圓柱各一個(gè),則新的底面半徑為_(kāi). 解析答案 2.(2016課標(biāo)全國(guó)丙改編)在封閉的直三棱柱ABCA1B1C1內(nèi)有一個(gè)體積為V的球,若AB BC,AB6,BC8,AA13,則V的最大值是_. 解析答案 解析過(guò)點(diǎn)C作CE垂直AD所在直線于點(diǎn)E,梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體是由以線段AB的長(zhǎng)為底面圓半徑,線段BC為母線
2、的圓柱挖去以線段CE的長(zhǎng)為底面圓半徑,ED為高的圓錐,如圖所示, 解析答案 由圓柱的側(cè)面積相等,得2r1h12r2h2,解析答案 考情考向分析 返回 1.考查空間幾何體面積、體積的計(jì)算.2.考查空間幾何體的側(cè)面展開(kāi)圖及簡(jiǎn)單的組合體問(wèn)題. 熱點(diǎn)一空間幾何體的結(jié)構(gòu)特征熱點(diǎn)分類突破棱柱的側(cè)棱都平行且相等,上下底面是全等且平行的多邊形;棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形;棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.圓柱可由矩形繞其任意一邊旋轉(zhuǎn)得到;圓錐可以由直角三角形繞其直角邊旋轉(zhuǎn)得到;圓臺(tái)可以由直角梯形繞直角腰或等腰梯形繞上、下底中點(diǎn)連線旋轉(zhuǎn)得到,也可由平行于圓錐底
3、面的平面截圓錐得到;球可以由半圓或圓繞直徑旋轉(zhuǎn)得到. 例1設(shè)有以下四個(gè)命題:底面是平行四邊形的四棱柱是平行六面體;底面是矩形的平行六面體是長(zhǎng)方體;直四棱柱是直平行六面體;棱臺(tái)的各側(cè)棱延長(zhǎng)后必交于一點(diǎn).其中真命題的序號(hào)是_.解析命題符合平行六面體的定義,故命題是正確的;底面是矩形的平行六面體的側(cè)棱可能與底面不垂直,故命題是錯(cuò)誤的;因?yàn)橹彼睦庵牡酌娌灰欢ㄊ瞧叫兴倪呅危拭}是錯(cuò)誤的;命題由棱臺(tái)的定義知是正確的. 解析答案思維升華 思維升華判定與空間幾何體結(jié)構(gòu)特征有關(guān)命題的方法:(1)緊扣結(jié)構(gòu)特征是判斷的關(guān)鍵,熟悉空間幾何體的結(jié)構(gòu)特征,依據(jù)條件構(gòu)建幾何模型,在條件不變的情況下,變換模型中的線面關(guān)系
4、或增加線、面等基本元素,然后再依據(jù)題意判定.(2)通過(guò)旋轉(zhuǎn)體的結(jié)構(gòu),可對(duì)得到旋轉(zhuǎn)體的平面圖形進(jìn)行分解,結(jié)合旋轉(zhuǎn)體的定義進(jìn)行分析. 跟蹤演練1(1)給出下列四個(gè)命題:各側(cè)面都是全等四邊形的棱柱一定是正棱柱;對(duì)角面是全等矩形的六面體一定是長(zhǎng)方體;有兩側(cè)面垂直于底面的棱柱一定是直棱柱;長(zhǎng)方體一定是正四棱柱.其中正確命題的個(gè)數(shù)是_.解析直平行六面體底面是菱形,滿足條件但不是正棱柱;底面是等腰梯形的直棱柱,滿足條件但不是長(zhǎng)方體;顯然錯(cuò)誤. 0 解析答案 (2)以下命題:以直角三角形的一邊為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐;以直角梯形的一腰為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺(tái);圓柱、圓錐、圓臺(tái)的底面都是圓面;一個(gè)平
5、面截圓錐,得到一個(gè)圓錐和一個(gè)圓臺(tái).其中正確命題的個(gè)數(shù)為_(kāi).解析命題錯(cuò),因?yàn)檫@條邊若是直角三角形的斜邊,則得不到圓錐.命題錯(cuò),因?yàn)檫@條腰必須是垂直于兩底的腰.命題對(duì).命題錯(cuò),必須用平行于圓錐底面的平面截圓錐才可以.1 解析答案 熱點(diǎn)二幾何體的表面積與體積空間幾何體的表面積和體積計(jì)算是高考中常見(jiàn)的一個(gè)考點(diǎn),解決這類問(wèn)題,首先要熟練掌握各類空間幾何體的表面積和體積計(jì)算公式,其次要掌握一定的技巧,如把不規(guī)則幾何體分割成幾個(gè)規(guī)則幾何體的技巧,把一個(gè)空間幾何體納入一個(gè)更大的幾何體中的補(bǔ)形技巧. 例2(1)已知一個(gè)圓錐的底面積為2,側(cè)面積為4,則該圓錐的體積為_(kāi).解析設(shè)圓錐的底面半徑為r,母線長(zhǎng)為l, 解析
6、答案 解析答案思維升華 思維升華(1)求多面體的表面積的基本方法就是逐個(gè)計(jì)算各個(gè)面的面積,然后求和.(2)求體積時(shí)可以把空間幾何體進(jìn)行分解,把復(fù)雜的空間幾何體的體積分解為一些簡(jiǎn)單幾何體體積的和或差.求解時(shí)注意不要多算也不要少算. 2 5 解析答案 熱點(diǎn)三多面體與球與球有關(guān)的組合體問(wèn)題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖.如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑.如球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑.球與旋轉(zhuǎn)體的組合,通常作它們的軸截面解題,球與多面體的組
7、合,通過(guò)多面體的一條側(cè)棱和球心(或“切點(diǎn)” “接點(diǎn)” )作出截面圖. 16解析在ABC中,BC2AB2AC22ABACcos 603, AC2AB2BC2,即AB BC,又SA平面ABC,故球O的表面積為42 216.解析答案 (2)如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8 cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6 cm,如果不計(jì)容器的厚度,則球的體積為_(kāi) cm 3. 答案解析思維升華 解析過(guò)球心與正方體中點(diǎn)的截面如圖,設(shè)球心為點(diǎn)O,球半徑為 R cm,正方體上底面中心為點(diǎn)A,上底面一邊的中點(diǎn)為點(diǎn)B,在RtOAB中,OA(R2)cm,AB4 cm,
8、OBR cm,由R2(R2)242,得R5, 思維升華 思維升華三棱錐PABC可通過(guò)補(bǔ)形為長(zhǎng)方體求解外接球問(wèn)題的兩種情形:(1)點(diǎn)P可作為長(zhǎng)方體上底面的一個(gè)頂點(diǎn),點(diǎn)A、B、C可作為下底面的三個(gè)頂點(diǎn);(2)PABC為正四面體,則正四面體的棱都可作為一個(gè)正方體的面對(duì)角線. 答案解析返回 解析如圖,以AB,AC,AD為棱把該三棱錐擴(kuò)充成長(zhǎng)方體,則該長(zhǎng)方體的外接球恰為三棱錐的外接球,三棱錐的外接球的直徑是長(zhǎng)方體的體對(duì)角線長(zhǎng). 返回 押題依據(jù) 高考押題精練1.如圖,三棱錐ABCD中,E是AC的中點(diǎn),F(xiàn)在AD上,且2AFFD,若三棱錐ABEF的體積是2,則四棱錐BECDF的體積為_(kāi).押題依據(jù)簡(jiǎn)單幾何體的表
9、面積和體積的計(jì)算是高考考查的重點(diǎn),本題從兩幾何體的體積關(guān)系進(jìn)行考查,符合高考命題思想. 10 解析答案 押題依據(jù) 押題依據(jù)多面體的外接球一般借助補(bǔ)形為長(zhǎng)方體的外接球解決,解法靈活,是高考的熱點(diǎn). 12 答案解析 解析因?yàn)槿忮FSABC為正三棱錐,所以SB AC,又AM SB,AC AMA,所以SB平面SAC,所以SB SA,SB SC,同理,SA SC,即SA,SB,SC三線兩兩垂直,且AB2 ,所以SASBSC2,所以(2R)232212,所以球的表面積S4R212. 押題依據(jù) 3.已知半徑為1的球O中內(nèi)接一個(gè)圓柱,當(dāng)圓柱的側(cè)面積最大時(shí),球的體積與圓柱的體積的比值為_(kāi).押題依據(jù)求空間幾何體的體積是立體幾何的重要內(nèi)容之一,也是高考的熱點(diǎn)問(wèn)題之一,主要是求柱體、錐體、球體或簡(jiǎn)單組合體的體積.本題通過(guò)球的內(nèi)接圓柱,來(lái)考查球與圓柱的體積計(jì)算,設(shè)問(wèn)角度新穎,值得關(guān)注. 返回答案解析 返回