《高中平面幾何定理》由會員分享,可在線閱讀,更多相關《高中平面幾何定理(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(高中)平面幾何基礎知識(基本定理、基本性質(zhì))
1. 勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.
2. 射影定理(歐幾里得定理)
3. 中線定理(巴布斯定理)設△ABC的邊BC的中點為P,則有;
中線長:.
4. 垂線定理:.
高線長:.
5. 角平分線定理:三角形一個角的平分線分對邊所成的兩條線段與這個角的兩邊對應成比例.
如△ABC中,AD平分∠BAC,則;(外角平分線定理).
角平
2、分線長:(其中為周長一半).
6. 正弦定理:,(其中為三角形外接圓半徑).
7. 余弦定理:.
8. 張角定理:.
9. 斯特瓦爾特(Stewart)定理:設已知△ABC及其底邊上B、C兩點間的一點D,則有AB2DC+AC2BD-AD2BC=BCDCBD.
10. 圓周角定理:同弧所對的圓周角相等,等于圓心角的一半.(圓外角如何轉化?)
11. 弦切角定理:弦切角等于夾弧所對的圓周角.
12. 圓冪定理:(相交弦定理:垂徑定理:切割線定理(割線定理):切線長定理:)
13. 布拉美古塔(Brahmagupta)定理: 在圓內(nèi)接四邊形ABCD中,AC⊥BD,自對角線的交點P向一
3、邊作垂線,其延長線必平分對邊.
14. 點到圓的冪:設P為⊙O所在平面上任意一點,PO=d,⊙O的半徑為r,則d2-r2就是點P對于⊙O的冪.過P任作一直線與⊙O交于點A、B,則PAPB= |d2-r2|.“到兩圓等冪的點的軌跡是與此二圓的連心線垂直的一條直線,如果此二圓相交,則該軌跡是此二圓的公共弦所在直線”這個結論.這條直線稱為兩圓的“根軸”.三個圓兩兩的根軸如果不互相平行,則它們交于一點,這一點稱為三圓的“根心”.三個圓的根心對于三個圓等冪.當三個圓兩兩相交時,三條公共弦(就是兩兩的根軸)所在直線交于一點.
15. 托勒密(Ptolemy)定理:圓內(nèi)接四邊形對角線之積等于兩組對邊乘積
4、之和,即ACBD=ABCD+ADBC,(逆命題成立) .(廣義托勒密定理)ABCD+ADBC≥ACBD.
16. 蝴蝶定理:AB是⊙O的弦,M是其中點,弦CD、EF經(jīng)過點M,CF、DE交AB于P、Q,求證:MP=QM.
17. 費馬點:定理1等邊三角形外接圓上一點,到該三角形較近兩頂點距離之和等于到另一頂點的距離;不在等邊三角形外接圓上的點,到該三角形兩頂點距離之和大于到另一點的距離.定理2 三角形每一內(nèi)角都小于120時,在三角形內(nèi)必存在一點,它對三條邊所張的角都是120,該點到三頂點距離和達到最小,稱為“費馬點”,當三角形有一內(nèi)角不小于120時,此角的頂點即為費馬點.
18. 拿破侖
5、三角形:在任意△ABC的外側,分別作等邊△ABD、△BCE、△CAF,則AE、AB、CD三線共點,并且AE=BF=CD,這個命題稱為拿破侖定理. 以△ABC的三條邊分別向外作等邊△ABD、△BCE、△CAF,它們的外接圓⊙C1 、⊙A1 、⊙B1的圓心構成的△——外拿破侖的三角形,⊙C1 、⊙A1 、⊙B1三圓共點,外拿破侖三角形是一個等邊三角形;△ABC的三條邊分別向△ABC的內(nèi)側作等邊△ABD、△BCE、△CAF,它們的外接圓⊙C2 、⊙A2 、⊙B2的圓心構成的△——內(nèi)拿破侖三角形,⊙C2 、⊙A2 、⊙B2三圓共點,內(nèi)拿破侖三角形也是一個等邊三角形.這兩個拿破侖三角形還具有相同的中心
6、.
19. 九點圓(Nine point round或歐拉圓或費爾巴赫圓):三角形中,三邊中心、從各頂點向其對邊所引垂線的垂足,以及垂心與各頂點連線的中點,這九個點在同一個圓上,九點圓具有許多有趣的性質(zhì),例如:
(1)三角形的九點圓的半徑是三角形的外接圓半徑之半;
(2)九點圓的圓心在歐拉線上,且恰為垂心與外心連線的中點;
(3)三角形的九點圓與三角形的內(nèi)切圓,三個旁切圓均相切〔費爾巴哈定理〕.
20. 歐拉(Euler)線:三角形的外心、重心、九點圓圓心、垂心依次位于同一直線(歐拉線)上.
21. 歐拉(Euler)公式:設三角形的外接圓半徑為R,內(nèi)切圓半徑為r,外心與內(nèi)
7、心的距離為d,則d2=R2-2Rr.
22. 銳角三角形的外接圓半徑與內(nèi)切圓半徑的和等于外心到各邊距離的和.
23. 重心:三角形的三條中線交于一點,并且各中線被這個點分成2:1的兩部分;
重心性質(zhì):(1)設G為△ABC的重心,連結AG并延長交BC于D,則D為BC的中點,則;
(2)設G為△ABC的重心,則;
(3)設G為△ABC的重心,過G作DE∥BC交AB于D,交AC于E,過G作PF∥AC交AB于P,交BC于F,過G作HK∥AB交AC于K,交BC于H,則;
(4)設G為△ABC的重心,則
①;
②;
③(P為△ABC內(nèi)任意一點);
④到三角形三頂點距離的平方和最小的點
8、是重心,即最??;
⑤三角形內(nèi)到三邊距離之積最大的點是重心;反之亦然(即滿足上述條件之一,則G為△ABC的重心).
24. 垂心:三角形的三條高線的交點;
垂心性質(zhì):(1)三角形任一頂點到垂心的距離,等于外心到對邊的距離的2倍;
(2)垂心H關于△ABC的三邊的對稱點,均在△ABC的外接圓上;
(3)△ABC的垂心為H,則△ABC,△ABH,△BCH,△ACH的外接圓是等圓;
(4)設O,H分別為△ABC的外心和垂心,則.
25. 內(nèi)心:三角形的三條角分線的交點—內(nèi)接圓圓心,即內(nèi)心到三角形各邊距離相等;
內(nèi)心性質(zhì):(1)設I為△ABC的內(nèi)心,則I到△ABC三邊的距離
9、相等,反之亦然;
(2)設I為△ABC的內(nèi)心,則;
(3)三角形一內(nèi)角平分線與其外接圓的交點到另兩頂點的距離與到內(nèi)心的距離相等;反之,若平分線交△ABC外接圓于點K,I為線段AK上的點且滿足KI=KB,則I為△ABC的內(nèi)心;
(4)設I為△ABC的內(nèi)心, 平分線交BC于D,交△ABC外接圓于點K,則;
(5)設I為△ABC的內(nèi)心,I在上的射影分別為,內(nèi)切圓半徑為,令,則①;②;③.
26. 外心:三角形的三條中垂線的交點——外接圓圓心,即外心到三角形各頂點距離相等;
外心性質(zhì):(1)外心到三角形各頂點距離相等;
(2)設O為△ABC的外心,則或;
(3);(4)銳角三角形的
10、外心到三邊的距離之和等于其內(nèi)切圓與外接圓半徑之和.
27. 旁心:一內(nèi)角平分線與兩外角平分線交點——旁切圓圓心;設△ABC的三邊令,分別與外側相切的旁切圓圓心記為,其半徑分別記為.
旁心性質(zhì):(1)(對于頂角B,C也有類似的式子);
(2);
(3)設的連線交△ABC的外接圓于D,則(對于有同樣的結論);
(4)△ABC是△IAIBIC的垂足三角形,且△IAIBIC的外接圓半徑等于△ABC的直徑為2R.
28. 三角形面積公式:
,其中表示邊上的高,為外接圓半徑,為內(nèi)切圓半徑,.
29. 三角形中內(nèi)切圓,旁切圓和外接圓半徑的相互關系:
30. 梅涅勞斯(Menelaus
11、)定理:設△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c的直線的交點分別為P、Q、R則有 .(逆定理也成立)
31. 梅涅勞斯定理的應用定理1:設△ABC的∠A的外角平分線交邊CA于Q,∠C的平分線交邊AB于R,∠B的平分線交邊CA于Q,則P、Q、R三點共線.
32. 梅涅勞斯定理的應用定理2:過任意△ABC的三個頂點A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點P、Q、R,則P、Q、R三點共線.
33. 塞瓦(Ceva)定理:設X、Y、Z分別為△ABC的邊BC、CA、AB上的一點,則AX、BY、CZ所在直線交于一點的充要條件是=1.
34. 塞瓦
12、定理的應用定理:設平行于△ABC的邊BC的直線與兩邊AB、AC的交點分別是D、E,又設BE和CD交于S,則AS一定過邊BC的中點M.
35. 塞瓦定理的逆定理:(略)
36. 塞瓦定理的逆定理的應用定理1:三角形的三條中線交于一點,三角形的三條高線交于一點,三角形的三條角分線交于一點.
37. 塞瓦定理的逆定理的應用定理2:設△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點R、S、T,則AR、BS、CT交于一點.
38. 西摩松(Simson)定理:從△ABC的外接圓上任意一點P向三邊BC、CA、AB或其延長線作垂線,設其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線S
13、imson line).
39. 西摩松定理的逆定理:(略)
40. 關于西摩松線的定理1:△ABC的外接圓的兩個端點P、Q關于該三角形的西摩松線互相垂直,其交點在九點圓上.
41. 關于西摩松線的定理2(安寧定理):在一個圓周上有4點,以其中任三點作三角形,再作其余一點的關于該三角形的西摩松線,這些西摩松線交于一點.
42. 史坦納定理:設△ABC的垂心為H,其外接圓的任意點P,這時關于△ABC的點P的西摩松線通過線段PH的中心.
43. 史坦納定理的應用定理:△ABC的外接圓上的一點P的關于邊BC、CA、AB的對稱點和△ABC的垂心H同在一條(與西摩松線平行的)直線上.這條直線被
14、叫做點P關于△ABC的鏡象線.
44. 牛頓定理1:四邊形兩條對邊的延長線的交點所連線段的中點和兩條對角線的中點,三點共線.這條直線叫做這個四邊形的牛頓線.
45. 牛頓定理2:圓外切四邊形的兩條對角線的中點,及該圓的圓心,三點共線.
46. 笛沙格定理1:平面上有兩個三角形△ABC、△DEF,設它們的對應頂點(A和D、B和E、C和F)的連線交于一點,這時如果對應邊或其延長線相交,則這三個交點共線.
47. 笛沙格定理2:相異平面上有兩個三角形△ABC、△DEF,設它們的對應頂點(A和D、B和E、C和F)的連線交于一點,這時如果對應邊或其延長線相交,則這三個交點共線.
48. 波
15、朗杰、騰下定理:設△ABC的外接圓上的三點為P、Q、R,則P、Q、R關于△ABC交于一點的充要條件是:弧AP+弧BQ+弧CR=0(mod2) .
49. 波朗杰、騰下定理推論1:設P、Q、R為△ABC的外接圓上的三點,若P、Q、R關于△ABC的西摩松線交于一點,則A、B、C三點關于△PQR的的西摩松線交于與前相同的一點.
50. 波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點是A、B、C、P、Q、R六點任取三點所作的三角形的垂心和其余三點所作的三角形的垂心的連線段的中點.
51. 波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點P的關于△ABC的西摩松線,如設QR為垂直于這
16、條西摩松線該外接圓的弦,則三點P、Q、R的關于△ABC的西摩松線交于一點.
52. 波朗杰、騰下定理推論4:從△ABC的頂點向邊BC、CA、AB引垂線,設垂足分別是D、E、F,且設邊BC、CA、AB的中點分別是L、M、N,則D、E、F、L、M、N六點在同一個圓上,這時L、M、N點關于關于△ABC的西摩松線交于一點.
53. 卡諾定理:通過△ABC的外接圓的一點P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點分別是D、E、F,則D、E、F三點共線.
54. 奧倍爾定理:通過△ABC的三個頂點引互相平行的三條直線,設它們與△ABC的外接圓的交點分
17、別是L、M、N,在△ABC的外接圓上取一點P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點分別是D、E、F,則D、E、F三點共線.
55. 清宮定理:設P、Q為△ABC的外接圓的異于A、B、C的兩點,P點的關于三邊BC、CA、AB的對稱點分別是U、V、W,這時,QU、QV、QW和邊BC、CA、AB或其延長線的交點分別是D、E、F,則D、E、F三點共線.
56. 他拿定理:設P、Q為關于△ABC的外接圓的一對反點,點P的關于三邊BC、CA、AB的對稱點分別是U、V、W,這時,如果QU、QV、QW和邊BC、CA、AB或其延長線的交點分別是D、E、F,則D、E、F三點共線.
18、(反點:P、Q分別為圓O的半徑OC和其延長線的兩點,如果OC2=OQOP 則稱P、Q兩點關于圓O互為反點)
57. 朗古來定理:在同一圓周上有A1、B1、C1、D1四點,以其中任三點作三角形,在圓周取一點P,作P點的關于這4個三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個垂足在同一條直線上.
58. 從三角形各邊的中點,向這條邊所對的頂點處的外接圓的切線引垂線,這些垂線交于該三角形的九點圓的圓心.
59. 一個圓周上有n個點,從其中任意n-1個點的重心,向該圓周的在其余一點處的切線所引的垂線都交于一點.
60. 康托爾定理1:一個圓周上有n個點,從其中任意n-2個點的重心向余
19、下兩點的連線所引的垂線共點.
61. 康托爾定理2:一個圓周上有A、B、C、D四點及M、N兩點,則M和N點關于四個三角形△BCD、△CDA、△DAB、△ABC中的每一個的兩條西摩松線的交點在同一直線上.這條直線叫做M、N兩點關于四邊形ABCD的康托爾線.
62. 康托爾定理3:一個圓周上有A、B、C、D四點及M、N、L三點,則M、N兩點的關于四邊形ABCD的康托爾線、L、N兩點的關于四邊形ABCD的康托爾線、M、L兩點的關于四邊形ABCD的康托爾線交于一點.這個點叫做M、N、L三點關于四邊形ABCD的康托爾點.
63. 康托爾定理4:一個圓周上有A、B、C、D、E五點及M、N、L三點,則
20、M、N、L三點關于四邊形BCDE、CDEA、DEAB、EABC中的每一個康托爾點在一條直線上.這條直線叫做M、N、L三點關于五邊形A、B、C、D、E的康托爾線.
64. 費爾巴赫定理:三角形的九點圓與內(nèi)切圓和旁切圓相切.
65. 莫利定理:將三角形的三個內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個交點,則這樣的三個交點可以構成一個正三角形.這個三角形常被稱作莫利正三角形.
66. 布利安松定理:連結外切于圓的六邊形ABCDEF相對的頂點A和D、B和E、C和F,則這三線共點.
67. 帕斯卡(Paskal)定理:圓內(nèi)接六邊形ABCDEF相對的邊AB和DE、BC和EF、CD和FA的(或
21、延長線的)交點共線.
68. 阿波羅尼斯(Apollonius)定理:到兩定點A、B的距離之比為定比m:n(值不為1)的點P,位于將線段AB分成m:n的內(nèi)分點C和外分點D為直徑兩端點的定圓周上.這個圓稱為阿波羅尼斯圓.
69. 庫立奇*大上定理:(圓內(nèi)接四邊形的九點圓)圓周上有四點,過其中任三點作三角形,這四個三角形的九點圓圓心都在同一圓周上,我們把過這四個九點圓圓心的圓叫做圓內(nèi)接四邊形的九點圓.
70. 密格爾(Miquel)點: 若AE、AF、ED、FB四條直線相交于A、B、C、D、E、F六點,構成四個三角形,它們是△ABF、△AED、△BCE、△DCF,則這四個三角形的外接圓共點,這個點稱為密格爾點.
71. 葛爾剛(Gergonne)點:△ABC的內(nèi)切圓分別切邊AB、BC、CA于點D、E、F,則AE、BF、CD三線共點,這個點稱為葛爾剛點.
72. 歐拉關于垂足三角形的面積公式:O是三角形的外心,M是三角形中的任意一點,過M向三邊作垂線,三個垂足形成的三角形的面積,其公式: .