喜歡這個資料需要的話就充值下載吧。。。資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
重 慶 理 工 大 學(xué)
畢業(yè)設(shè)計(論文)
兩自由度并聯(lián)機械手的設(shè)計
所在學(xué)院
專 業(yè)
班 級
姓 名
學(xué) 號
指導(dǎo)老師
年 月 日
摘 要
并聯(lián)機構(gòu)具有剛度大、承載能力強、誤差小、精度高、自重負(fù)荷比小、動力性能好、控制容易等一系列優(yōu)點可以作為航天上的對接器、航海上的潛艇救援對接器;工業(yè)上可以作為大件的裝配機器人、精密操作的微動器;可以在汽車總裝線上自動安裝車輪部件;另外,醫(yī)用機器人,天文望遠(yuǎn)鏡等都利用了并聯(lián)技術(shù)。
本文并聯(lián)機構(gòu)的研究方向:
(1)并聯(lián)機構(gòu)組成原理的研究
研究并聯(lián)機構(gòu)自由度計算、運動副類型、支鉸類型以及運動學(xué)分析、建模與仿真等問題。
(2)并聯(lián)機構(gòu)運動空間的研究
(3)并聯(lián)機構(gòu)結(jié)構(gòu)設(shè)計的研究
并聯(lián)機構(gòu)的結(jié)構(gòu)設(shè)計包括很多內(nèi)容,如機構(gòu)的總體布局、安全機構(gòu)設(shè)計。
由于本人水平有限,文中的錯誤和不足在所難免,懇請各位老師給予批評和指正。
關(guān)鍵詞:,機械手;并聯(lián)機械手;虛擬樣機;并聯(lián)機構(gòu)
Abstract
Parallel mechanism with high rigidity, strong bearing capacity, small error, high precision, small self-weight loading ratio, good dynamic performance, easy control and a series of advantages can be used as a submarine rescue docking docking device, maritime space on; the industry can be used as micro - actuator assembly machines, large precision operation; you can automatically install the wheel assembly in automobile assembly line; in addition, medical robotics, astronomical telescope, using parallel technology.
The direction of the research of parallel mechanism:
(1) study on the principle of parallel mechanism.
The degree of freedom parallel mechanism, motion pair of calculation type, hinge type and kinematic analysis, modeling and Simulation of the.
(2) for parallel mechanism workspace
Including the motion space analysis and simulation, the reachable workspace solution (such as numerical method, sphere coordinate searching method etc.), mechanism of interference analysis and location.
(3) for parallel mechanism structure design
Structure design of parallel mechanism includes many contents, such as the design of general layout, organization security mechanism.
Because of my limited ability, mistakes and shortcomings in this paper can hardly be avoided, ask teachers to give the criticism and correction.
Keywords three degree of freedom parallel mechanism; virtual prototype;
目 錄
摘 要 II
Abstract III
目 錄 IV
第1章 前 言 1
1.1 課題研究背景意義 1
1.2 國內(nèi)外研究現(xiàn)狀 2
第2章 并聯(lián)機械手的結(jié)構(gòu)及工作原理 5
2.1 并聯(lián)運動機構(gòu)概述 5
2.2并聯(lián)的結(jié)構(gòu)及機械運動原理 5
2.3 控制系統(tǒng)結(jié)構(gòu)及工作原理 6
2.4 并聯(lián)機構(gòu)工作空間的分析 7
第3章 并聯(lián)機構(gòu)主要部件的設(shè)計 9
3.1 電動機選型 9
3.1.1電機的分類 9
3.1.2選擇步進(jìn)電機的計算 9
3.2手爪夾持器結(jié)構(gòu)設(shè)計與校核 19
3.2.1手爪夾持器種類 19
3.2.2夾持器設(shè)計計算 20
3.2.3夾持器校核 21
第4章 并聯(lián)機構(gòu)機并聯(lián)機構(gòu)空間分析 23
4.1并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的運動學(xué)約束 23
4.1.1 連桿桿長約束 23
4.1.2 運動副轉(zhuǎn)角約束 23
4.1.3 連桿桿間干涉 24
4.2 確定并聯(lián)機構(gòu)空間的基本方法 24
4.3 PLC控制部分設(shè)計 24
4.3.1 可編程序控制器的選擇及工作過程 25
4.3.2 可編程序控制器的使用步驟 26
4.3.3可編程序控制器控制方案 27
4.3.4 PLC控制原理圖設(shè)計 27
4.3.5 PLC梯形圖概述 28
總 結(jié) 29
參考文獻(xiàn) 30
致 謝 31
32
第1章 前 言
1.1 課題研究背景意義
并聯(lián)機器人與已經(jīng)用的很好、很廣泛的串聯(lián)機器人相比往往使人感到它并不適合用作機器人,它沒有那么大的活動空間,它活動上平臺遠(yuǎn)遠(yuǎn)不如串聯(lián)機器人手部來得靈活。的確這種6-TPS結(jié)構(gòu)的并聯(lián)機構(gòu)其工作空間只是一個厚度不大的蘑菇形空間,位于機構(gòu)的上方,而表示靈活度的末端件3維轉(zhuǎn)動的活動范圍一般只在60°上下,角度最大也達(dá)不到±90°??墒呛褪澜缟先魏问挛镆粯佣际且环譃槎?,若用并聯(lián)式的優(yōu)點比串聯(lián)式的缺點,也同樣令人吃驚。首先,并聯(lián)式結(jié)構(gòu)其末端件上平臺同時經(jīng)由6根桿支承,與串聯(lián)的懸臂梁相比,剛度大多了,而且結(jié)構(gòu)穩(wěn)定;第二,由于剛度大,并聯(lián)式較串聯(lián)式在相同的自重或體積下有高得多的承載能力;第三,串聯(lián)式末端件上的誤差是各個關(guān)節(jié)誤差的積累和放大,因而誤差大而精度低,并聯(lián)式?jīng)]有那樣的積累和放大關(guān)系,誤差小而精度高;第四,串聯(lián)式機器人的驅(qū)動電動機及傳動系統(tǒng)大都放在運動著的大小臂上,增加了系統(tǒng)的慣性,惡化了動力性能,而并聯(lián)式則很容易將電動機置于機座上,減小了運動負(fù)荷;第五,在位置求解上,串聯(lián)機構(gòu)正解容易,但反解十分困難,而并聯(lián)機構(gòu)正解困難反解卻非常容易。由于機器人的在線實時計算是要計算反解的,這就對串聯(lián)式十分不利,而并聯(lián)式卻容易實現(xiàn)。
并聯(lián)機構(gòu)實質(zhì)上是機器人技術(shù)與機構(gòu)結(jié)構(gòu)技術(shù)結(jié)合的產(chǎn)物,與實現(xiàn)等同功能的傳統(tǒng)五坐標(biāo)數(shù)控機構(gòu)相比,并聯(lián)機構(gòu)具有如下優(yōu)點:
剛度重量比大:因采用并聯(lián)閉環(huán)靜定或非靜定桿系結(jié)構(gòu),且在準(zhǔn)靜態(tài)情況下,傳動構(gòu)件理論上為僅受拉壓載荷的二力桿,故傳動機構(gòu)的單位重量具有很高的承載能力。
響應(yīng)速度快:運動部件慣性的大幅度降低有效地改善了伺服控制器的動態(tài)品質(zhì),允許動平臺獲得很高的進(jìn)給速度和加速度,因而特別適于各種高速數(shù)控作業(yè)。
環(huán)境適應(yīng)性強:便于可重組和模塊化設(shè)計,且可構(gòu)成形式多樣的布局和自由度組合。在動平臺上安裝刀具可進(jìn)行多坐標(biāo)銑、鉆、磨、拋光,以及異型刀具刃磨等加工。裝備機械手腕、高能束源或CCD攝像機等末端執(zhí)行器,還可完成精密裝配、特種加工與并聯(lián)機構(gòu)等作業(yè)。
技術(shù)附加值高:并聯(lián)機構(gòu)具有“硬件”簡單,“軟件”復(fù)雜的特點,是一種技術(shù)附加值很高的機電一體化產(chǎn)品,因此可望獲得高額的經(jīng)濟(jì)回報。
目前,國際學(xué)術(shù)界和工程界對研究與開發(fā)并聯(lián)機構(gòu)非常重視,并于90年代中期相繼推出結(jié)構(gòu)形式各異的產(chǎn)品化樣機。1994年在芝加哥國際機構(gòu)博覽會上,美國Ingersoll銑床公司、Giddings&Lewis公司和Hexal公司首次展出了稱為“六足蟲”(Hexapod)和“變異型”(VARIAX)的數(shù)控機構(gòu)與加工中心,引起轟動。此后,英國Geodetic公司,俄羅斯Lapik公司,挪威Multicraft公司,日本豐田、日立、三菱等公司,瑞士ETZH和IFW研究所,瑞典NeosRobotics公司,丹麥Braunschweig公司,德國亞琛工業(yè)大學(xué)、漢諾威大學(xué)和斯圖加特大學(xué)等單位也研制出不同結(jié)構(gòu)形式的數(shù)控銑床、激光加工和水射流機構(gòu)、并聯(lián)機構(gòu)機和加工中心。與之相呼應(yīng),由美國Sandia國家實驗室和國家標(biāo)準(zhǔn)局倡議,已于1996年專門成立了Hexapod用戶協(xié)會,并在國際互聯(lián)網(wǎng)上設(shè)立站點。近年來,與并聯(lián)機構(gòu)和并聯(lián)機器人操作機有關(guān)的學(xué)術(shù)會議層出不窮,例如第47~49屆CIRP年會、1998~1999年CIRA大會、ASME第25屆機構(gòu)學(xué)雙年會、第10屆TMM世界大會均有大量文章涉及這一領(lǐng)域。由美國國家科學(xué)基金會動議,1998年在意大利米蘭召開了第一屆國際并聯(lián)運動學(xué)機器專題研討會,并決定第二屆研討會于2000年在美國密執(zhí)安大學(xué)舉行。1994~1999年期間,在歷次大型國際機構(gòu)博覽會上均有這類新型機構(gòu)參展,并認(rèn)為可望成為21世紀(jì)高速輕型數(shù)控加工的主力裝備。
我國已將并聯(lián)機構(gòu)的研究與開發(fā)列入國家“九五”攻關(guān)計劃和863高技術(shù)發(fā)展計劃,相關(guān)基礎(chǔ)理論研究連續(xù)得到國家自然科學(xué)基金和國家攀登計劃的資助。部分高校還將并聯(lián)機構(gòu)的研發(fā)納入教育部211工程重點建設(shè)項目,并得到地方政府部門的支持且吸引了機構(gòu)骨干企業(yè)的參與。在國家自然科學(xué)基金委員會的支持下,中國大陸地區(qū)從事這方面研究的骨干力量,于1999年6月在清華大學(xué)召開了我國第一屆并聯(lián)機器人與并聯(lián)機構(gòu)設(shè)計理論與關(guān)鍵技術(shù)研討會,對并聯(lián)機構(gòu)的發(fā)展現(xiàn)狀、未來趨勢以及亟待解決的問題進(jìn)行了研討。
1.2 國內(nèi)外研究現(xiàn)狀
并聯(lián)機構(gòu)具有高剛度、高承載能力、高速度、高精度、重量輕、機械結(jié)構(gòu)簡單、標(biāo)準(zhǔn)化程度高和模塊化程度高等優(yōu)點,在要求精密加工的航空航天、兵器、船舶、電子等領(lǐng)域得到了成功的應(yīng)用。
(1)串聯(lián)結(jié)構(gòu)中的橫梁部件很容易受到彎曲扭矩的作用而產(chǎn)生扭曲變形,從而產(chǎn)生動態(tài)誤差;
(2)由于采用串聯(lián)的方法,因而整個運動誤差是每個坐標(biāo)軸運動誤差的累加;(3)由于運動部件質(zhì)量較重,從而使的運動慣性增大,運動速度收到限制,因而直接影響了并聯(lián)機構(gòu)效率;
(4)不滿足并聯(lián)機構(gòu)的基本原理——阿貝原理;
(5)由于受X,Y,Z相互垂直導(dǎo)軌的約束,測頭的空間位姿不夠靈活。
圖1-1 普通笛卡爾式串聯(lián)結(jié)構(gòu)示意圖
從整個發(fā)展進(jìn)程不難看出,并聯(lián)機構(gòu)技術(shù)是為滿足日益進(jìn)步的制造技術(shù)的需求而不斷向前發(fā)展的,是為先進(jìn)制造技術(shù)而服務(wù)的。近幾年,隨著精益生產(chǎn)、敏捷制造、虛擬制造、并行工程和逆向工程等各種先進(jìn)制造思想和理論的不斷提出,對并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)精度、并聯(lián)機構(gòu)效率及靈活性等相應(yīng)的技術(shù)指標(biāo)又提出了更高的要求,而傳統(tǒng)的具有笛卡兒坐標(biāo)系結(jié)構(gòu)的三并聯(lián)機構(gòu)機因其自身結(jié)構(gòu)的限制已很難達(dá)到這一要求,于是,各種非笛卡兒式并聯(lián)機構(gòu)技術(shù)應(yīng)運而生并迅速發(fā)展起來[13]。
圖1-2 幾種非笛卡爾串聯(lián)機構(gòu)并聯(lián)機構(gòu)機結(jié)構(gòu)示意圖
當(dāng)今國際市場需求快速變化的特點和21世紀(jì)更加個性化的市場趨勢,促進(jìn)了快速設(shè)計和制造技術(shù)的發(fā)展。并聯(lián)并聯(lián)機構(gòu)機是近30年發(fā)展起來的一種高效率的新型精密并聯(lián)機構(gòu)儀器,克服了傳統(tǒng)串聯(lián)并聯(lián)機構(gòu)機結(jié)構(gòu)布局的固有缺陷,有效地降低重量和提高對生產(chǎn)環(huán)境的適應(yīng)性,滿足了快速多變的市場需求。與常用的串聯(lián)并聯(lián)機構(gòu)機相比,它的優(yōu)點是:
(1)并聯(lián)中的可動平臺同時經(jīng)由3根可沿各自軸向伸縮的連桿支撐,從而使整個系統(tǒng)的剛度較串聯(lián)機構(gòu)相比有較大程度的提高;
(2)各并聯(lián)桿件只承受沿軸向的線性調(diào)節(jié)力的作用,因而其運動誤差小,不易變形;
(3)并聯(lián)機構(gòu)中,各桿件間不存在誤差累積和放大關(guān)系,容易實現(xiàn)高精度并聯(lián)機構(gòu);
(4)并聯(lián)運動機構(gòu)中運動部件的慣性質(zhì)量小,剛度大,因而有望實現(xiàn)高速、高效率并聯(lián)機構(gòu);
(5)可以將并聯(lián)機構(gòu)點放置在測長裝置的延長線上,從而減小阿貝誤差對并聯(lián)機構(gòu)結(jié)果的影響;
(6)并聯(lián)并聯(lián)機構(gòu)機測頭的空間位姿靈活,可從任何角度進(jìn)入工作表面,因而對表面形狀復(fù)雜,孔隙方位多的零件并聯(lián)機構(gòu)比較方便;
(7)并聯(lián)機構(gòu)結(jié)果不易受空氣波動、溫度變化等因素的影響;
(8)不需要復(fù)雜的跟蹤機構(gòu)、控制裝置等;
(9)并聯(lián)機構(gòu)具有“硬件”簡單,“軟件”復(fù)雜的特點,是一種技術(shù)附加值很高的機電一體化產(chǎn)品,因而渴望獲得高額的經(jīng)濟(jì)回報。
由此可以看出,并聯(lián)機構(gòu)恰好能夠?qū)Υ?lián)機構(gòu)的應(yīng)用局限進(jìn)行恰當(dāng)?shù)难a充,這無疑為新一代并聯(lián)機構(gòu)機的開發(fā)與研制帶來了希望,從而為拓寬并聯(lián)機構(gòu)機的應(yīng)用領(lǐng)域,促進(jìn)產(chǎn)品的多樣化,提高產(chǎn)品的市場競爭力奠定了堅實的理論基礎(chǔ)。
近年來,以并聯(lián)機構(gòu)學(xué)為理論依據(jù)的智能機器人技術(shù)及計算機數(shù)控加工技術(shù)的研究引起了各國學(xué)者的極大興趣,現(xiàn)已成為新的研究熱點,并認(rèn)為是21世界極具發(fā)展前景的先進(jìn)技術(shù)[14-15]。由于并聯(lián)運動機構(gòu)具有結(jié)構(gòu)剛性大、運動速度高、誤差不疊加等獨特特性,因而若將其應(yīng)用于并聯(lián)機構(gòu)機中,將有可能使并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)精度及并聯(lián)機構(gòu)效率等綜合性能得到很大程度的改善。由此可以看出,并聯(lián)運動機構(gòu)理論及應(yīng)用研究的興起也為新型并聯(lián)機構(gòu)機的開發(fā)提供了機遇,所以,開展并聯(lián)運動機構(gòu)的研究工作是非常必要的。
第2章 并聯(lián)機械手的結(jié)構(gòu)及工作原理
2.1 并聯(lián)運動機構(gòu)概述
從并聯(lián)機構(gòu)的結(jié)構(gòu)特點不難看出,并聯(lián)機構(gòu)并聯(lián)機構(gòu)機屬于一種新型非笛卡兒式并聯(lián)機構(gòu)系統(tǒng)。傳統(tǒng)的笛卡兒式并聯(lián)機構(gòu)系統(tǒng)對空間位置坐標(biāo)的并聯(lián)機構(gòu)是直接通過三個相互垂直的長度基準(zhǔn)來實現(xiàn)的,也就是說,這種并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)模型是直接建立在直角坐標(biāo)系基礎(chǔ)之上的,因而該并聯(lián)機構(gòu)機具有并聯(lián)機構(gòu)建模容易,并聯(lián)機構(gòu)結(jié)果直觀、數(shù)據(jù)處理簡單、符合大多數(shù)工件并聯(lián)機構(gòu)的需要等優(yōu)點。而對于由并聯(lián)閉環(huán)機構(gòu)所組成的并聯(lián)并聯(lián)機構(gòu)機來說,其測頭處的空間位置坐標(biāo)是有若干個并聯(lián)調(diào)節(jié)器的長度基準(zhǔn)和連接上下平臺的球形副(或轉(zhuǎn)動副)的角度基準(zhǔn)來表述的,由于這些變量參數(shù)之間的關(guān)系是非線性,所以與普通直角型并聯(lián)機構(gòu)機相比并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)建模問題就變得十分復(fù)雜。
并聯(lián)運動機構(gòu)是指上、下平臺用2個或2個以上分支相連,機構(gòu)具有2個或2個以上自由度,且以并聯(lián)方式驅(qū)動的空間閉環(huán)運動機構(gòu)。由于并聯(lián)運動機構(gòu)具有剛度重量比大,運行速度高、末端執(zhí)行器位姿靈活、誤差不疊加、結(jié)構(gòu)簡單、易于模塊化設(shè)計等優(yōu)點 ,因而在許多領(lǐng)域都已得到廣泛的應(yīng)用。例如:德國漢諾威、斯圖加特大學(xué)及不倫瑞克大學(xué)等已先后將并聯(lián)運動機構(gòu)應(yīng)用于激光加工、機構(gòu)、普通裝配及醫(yī)學(xué)等領(lǐng)域中。國內(nèi)一些知名大學(xué),如清華大學(xué)、天津大學(xué)、東北大學(xué)、燕山大學(xué)和哈爾濱工業(yè)大學(xué)等等,也正在開展并聯(lián)機構(gòu)方面的研究工作。
實際上,并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)建模問題就是并聯(lián)機構(gòu)的正運動求解問題。所謂正運動求解,就是在已知并聯(lián)機構(gòu)中各運動副的位置參數(shù)及各并聯(lián)調(diào)節(jié)器桿長變化量的情況下,來計算末端執(zhí)行器(如測頭)出的空間位置坐標(biāo)。由空間機構(gòu)學(xué)理論可知并聯(lián)閉環(huán)機構(gòu)的位置反解比較容易,但其位置正解卻相當(dāng)復(fù)雜,到目前為止,也只能給出其數(shù)值解,且明顯存在多解現(xiàn)象。
我們通過對并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的布局結(jié)構(gòu)進(jìn)行優(yōu)化,即將連接上下活動平臺的運動副以等邊三角形的方式進(jìn)行排列,從而使個運動副之間的相互關(guān)系簡潔化,然后充分利用機構(gòu)的運動約束和集合約束關(guān)系,建立由對應(yīng)機構(gòu)組成的并聯(lián)并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)模型。
2.2并聯(lián)的結(jié)構(gòu)及機械運動原理
本文所研究的并聯(lián)機構(gòu)的結(jié)構(gòu)見圖2-1[16]。由圖2.2.1可以看出,該主要由上下2個平臺和連桿組成。
從機構(gòu)的連接方式不難看出,三個中間連桿的運動是相互關(guān)聯(lián)和制約的,而不是相互分立的,因此,這種機構(gòu)屬于并聯(lián)運動機構(gòu)。并聯(lián)機構(gòu)的工作原理十分簡單,它是通過移動副的調(diào)節(jié)器來控制移動副的伸縮,使連桿長度發(fā)生變化,從而使測頭移動至測點位置,然后再由安裝在移動副內(nèi)的長度并聯(lián)機構(gòu)裝置測出桿長的變化量,并以此為依據(jù),計算出測點處的空間坐標(biāo)。
圖2-1 并聯(lián)機構(gòu)結(jié)構(gòu)簡圖
2.3 控制系統(tǒng)結(jié)構(gòu)及工作原理
并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的控制與并聯(lián)機構(gòu)系統(tǒng)結(jié)構(gòu)示意圖如圖2-2所示:
由圖可以看出來,該并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的控制與并聯(lián)機構(gòu)系統(tǒng)主要由三個基本單元組成,它們是:PC處理器單元,伺服電機控制單元和并聯(lián)機構(gòu)數(shù)據(jù)采集與存儲單元。PC處理單元主要完成數(shù)據(jù)處理、數(shù)據(jù)顯示、幾何尺寸計算和三維形體的重建等,同時還負(fù)責(zé)向其他兩個單元發(fā)送控制指令,以便協(xié)調(diào)整個系統(tǒng)的工作。伺服電機控制單元則主要是依據(jù)PC計算機所發(fā)送的控制指令對三個伺服電機的運行狀態(tài)進(jìn)行控制,從而確保他們按實際要求正常運轉(zhuǎn)。并聯(lián)機構(gòu)數(shù)據(jù)采集與存儲單元主要用于完成對三個線性刻度尺(例如光柵尺、激光干涉儀等)輸出的脈沖信號進(jìn)行記數(shù),并將計數(shù)結(jié)果存儲到對應(yīng)的三個存儲器中,以便于PC計算機進(jìn)行讀取。
圖2-2 控制與并聯(lián)機構(gòu)系統(tǒng)框圖
上述控制與并聯(lián)機構(gòu)系統(tǒng)的工作原理可簡述如下:
當(dāng)操作人員通過計算機鍵盤(或其他鍵控開關(guān))向計算機發(fā)出控制命令后,PC處理器則通過I/O控制器接口向三個交流伺服電機分別發(fā)出相應(yīng)的運行控制指令。當(dāng)三個伺服電機接受到正確的指令信息后,即驅(qū)動各自的滾珠絲杠進(jìn)行旋轉(zhuǎn),從而帶動相應(yīng)的移動副按實際要求進(jìn)行伸縮,使測頭向目標(biāo)點移動;同時,隨著移動副的伸縮,與之相連的線性長度記錄儀(如光柵尺等)開始輸出計數(shù)脈沖,并由三個32位的計數(shù)器分別進(jìn)行計數(shù)。若測頭移動過程中,連桿或運動副出現(xiàn)干涉現(xiàn)象,則驅(qū)動系統(tǒng)將立即向計算機反饋信息,以便通知計算機及時調(diào)整三個伺服電機的運行狀態(tài),及時修正測頭的運行軌跡,從而確保測頭安全、柔性地到達(dá)并聯(lián)機構(gòu)點位置。
當(dāng)測頭與被測目標(biāo)點接觸的一剎那,測頭的微動開關(guān)將產(chǎn)生一觸發(fā)脈沖,并將其反饋給PC計算機作為采樣觸發(fā)信號。PC計算機接收到該采樣指令后,則向32位計數(shù)器發(fā)出讀數(shù)指令,隨后便將計數(shù)器中的三個脈沖計數(shù)值讀入處理器,經(jīng)相應(yīng)處理軟件計算后,得到該并聯(lián)機構(gòu)點處的實際空間坐標(biāo)值,從而完成一次坐標(biāo)采樣過程。
2.4 并聯(lián)機構(gòu)工作空間的分析
工作空間(Workplace):設(shè)給定參考點C是動平臺執(zhí)行器的端點,工作空間是該端點在空間可以達(dá)到的所有點的集合。
完全工作空間(Complete workplace):動平臺上執(zhí)行器端點可從任何方向(位姿)到達(dá)的點的集合。
定向工作空間(Constant workplace):動平臺在固定位姿時執(zhí)行器端點可以到達(dá)的點的集合。
最大工作空間(Maximal workplace):動平臺執(zhí)行器端點可到達(dá)的點的最大集合,并考慮其具體位姿。
完全工作空間和定向工作空間都是最大工作空間的子集.
另外,工作空間是并聯(lián)機構(gòu)的重要特性,影響它的大小和形狀的因素主要有以下三個:
① 桿長的限制,桿件長度的變化是受到其結(jié)構(gòu)限制的,每一桿件的長度必須小于最大桿長,大于最小桿長。
② 轉(zhuǎn)動副轉(zhuǎn)角的限制,各種鉸鏈,包括球鉸接和萬向鉸接的轉(zhuǎn)角都受到結(jié)構(gòu)研制的,每一鉸鏈的轉(zhuǎn)角都應(yīng)小于最大轉(zhuǎn)角。
③ 桿件的尺寸干涉,連接動平臺和固定平臺的桿件都具有幾何尺寸,因此各桿件之間在運動過程中可能發(fā)生相互干涉。設(shè)桿件是直徑為D的圓柱體,兩相鄰桿件軸線之間的距離為Di,則Di>D。
第3章 并聯(lián)機構(gòu)主要部件的設(shè)計
3.1 電動機選型
3.1.1電機的分類
1.按工作電源分類根據(jù)電動機工作電源的不同,可分為直流電動機和交流電動機。其中交流電動機還分為單相電動機和三相電動機。
2.按結(jié)構(gòu)及工作原理分類電動機按結(jié)構(gòu)及工作原理可分為異步電動機和同步電動機。
同步電動機還可分為永磁同步電動機、磁阻同步電動機和磁滯同電動機。
異步電動機可分為感應(yīng)電動機和交流換向器電動機。感應(yīng)電動機又分為三相異步電動機、單相異步電動機和罩極異步電動機。交流換向器電動機又分為單相串勵電動機、交直流兩用電動機和推斥電動機。
直流電動機按結(jié)構(gòu)及工作原理可分為無刷直流電動機和有刷直流電動機。有刷直流電動機可分為永磁直流電動機和電磁直流電動機。電磁直流電動機又分為串勵直流電動機、并勵直流電動機、他勵直流電動機和復(fù)勵直流電動機。永磁直流電動機又分為稀土永磁直流電動機、鐵氧體永磁直流電動機和鋁鎳鈷永磁直流電動機。
3.按起動與運行方式分類電動機按起動與運行方式可分為電容起動式電動機、電容盍式電動機、電容起動運轉(zhuǎn)式電動機和分相式電動機。
4.按用途分類電動機按用途可分為驅(qū)動用電動機和控制用電動機。
驅(qū)動用電動機又分為電動工具(包括鉆孔、拋光、磨光、開槽、切割、擴(kuò)孔等工具)用電動機、家電(包括洗衣機、電風(fēng)扇、電冰箱、空調(diào)器、錄音機、錄像機、影碟機、吸塵器、照相機、電吹風(fēng)、電動剃須刀等)用電動機及其它通用小型機械設(shè)備(包括各種小型、小型機械、醫(yī)療器械、電子儀器等)用電動機。
控制用電動機又分為電動機和伺服電動機等。
5.按轉(zhuǎn)子的結(jié)構(gòu)分類電動機按轉(zhuǎn)子的結(jié)構(gòu)可分為籠型感應(yīng)電動機(舊標(biāo)準(zhǔn)稱為鼠籠型異步電動機)和繞線轉(zhuǎn)子感應(yīng)電動機(舊標(biāo)準(zhǔn)稱為繞線型異步電動機)。
6.按運轉(zhuǎn)速度分類電動機按運轉(zhuǎn)速度可分為高速電動機、低速電動機、恒速電動機、調(diào)速電動機。
低速電動機又分為齒輪減速電動機、電磁減速電動機、力矩電動機和爪極同步電動機等。
調(diào)速電動機除可分為有級恒速電動機、無級恒速電動機、有級變速電動機和無極變速電動機外,還可分為電磁調(diào)速電動機、直流調(diào)速電動機、PWM變頻調(diào)速電動機和開關(guān)磁阻調(diào)速電動機。
3.1.2選擇步進(jìn)電機的計算
機構(gòu)工作時,需要克服摩擦阻力矩、工件負(fù)載阻力矩和啟動時的慣性力矩。
根據(jù)轉(zhuǎn)矩的計算公式[15]:
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
式中:
—偏轉(zhuǎn)所需力矩(N·m);
—摩擦阻力矩(N·m);
—負(fù)載阻力矩(N·m);
—啟動時慣性阻力矩(N·m);
—工件負(fù)載對回轉(zhuǎn)軸線的轉(zhuǎn)動慣量(kg·m2);
—對回轉(zhuǎn)軸線的轉(zhuǎn)動慣量(kg·m2);
—偏轉(zhuǎn)角速度(rad/s);
—質(zhì)量(kg);
—負(fù)載質(zhì)量(kg);
—啟動時間(s);
—部分材料密度(kg/m3);
—手腕偏轉(zhuǎn)末端的線速度(m/s)。
根據(jù)已知條件:kg,m/s,m,m,m,s,采用的材料假定為鑄鋼,密度kg/m3。
將數(shù)據(jù)代入計算得:
kg
r/s
kg·m2
kg·m2
N·m
N·m
N·m
因為傳動是通過減速器實現(xiàn)的,所以查取手冊[15]得:
彈性聯(lián)軸器傳動效率;
滾動軸承傳動效率(一對);
減速器傳動效率;
計算得傳動的裝置的總效率。
電機在工作中實際要求轉(zhuǎn)矩 N·m (3.9)
根據(jù)計算得出的所需力矩,結(jié)合北京和利時電機技術(shù)有限公司生產(chǎn)的90系列的五相混合型步進(jìn)電機的技術(shù)數(shù)據(jù)和矩頻特性曲線,如圖3.3和圖3.4所示,選擇90BYG5200B-SAKRML-0301型號的步進(jìn)電機。
圖3.3 90BYG步進(jìn)電機技術(shù)數(shù)據(jù)
圖3.4 90BYG5200B-SAKRML-0301型步進(jìn)電機矩頻特性曲線
2.1.傳動結(jié)構(gòu)形式的選擇
該減速器是電傳動減速的諧波齒輪裝置。要求其傳動比較大﹑結(jié)構(gòu)簡單緊湊﹑效率較高﹑承載力較高﹑通用性良好。 選擇減速比:i1=100
因此本設(shè)計方案所選的結(jié)構(gòu)形式為剛輪固定﹑波發(fā)生器主動和柔輪從動比較合適。為了便于采用標(biāo)準(zhǔn)刀具來加工柔輪和剛輪,特選取壓力角的漸開線齒廓。
2.2.幾何參數(shù)的計算
齒數(shù)的確定
柔輪齒數(shù):
剛輪齒數(shù):
已知模數(shù):,則
柔輪分度圓直徑:
鋼輪分度圓直徑:
柔輪齒圈處的厚度:
重載時,為了增大柔輪的剛性, 允許將δ1計算值增加20%,即
柔輪筒體壁厚:
為了提高柔輪的剛度,取
輪齒寬度:
輪轂凸緣長度:取
柔輪筒體長度:
輪齒過渡圓角半徑:
為了減少應(yīng)力集中,以提高柔輪抗疲勞能力,取
由于采用壓力角的漸開線齒廓,傳動的嚙合參數(shù)可按考慮到構(gòu)件柔度的計算公式,即按如下公式進(jìn)行計算。
2.5.凸輪波發(fā)生器及其薄壁軸承的計算
滾珠直徑:
柔輪齒圈處的內(nèi)徑:
則:
軸承外環(huán)厚度:由于工藝上的要求,可將外環(huán)做成無滾道的
軸承內(nèi)環(huán)厚度:
內(nèi)環(huán)滾道深度:
式中的是考慮到外環(huán)無滾道而內(nèi)環(huán)滾道加深量。
軸承內(nèi)外環(huán)寬度:所用為滾珠軸承,近似等于齒寬
軸承外環(huán)外徑:
軸承內(nèi)環(huán)內(nèi)徑:
為了便于制造,采用雙偏心凸輪波發(fā)生器。
則凸輪圓弧半徑:
其中e是偏心距:
(—剛輪分度圓直徑,—柔輪分度圓直徑)
則凸輪圓弧半徑:
凸輪長半軸:
凸輪短半軸:
2.7.1柔輪齒面的接觸強度的計算
根據(jù)諧波傳動傳動比大的特點,其柔輪和剛輪的齒數(shù)較多,齒形很接近于直線。故實際諧波齒輪傳動的載荷能力主要應(yīng)由柔輪齒側(cè)工作表面的最大接觸應(yīng)力所限制。因此,諧波齒輪傳動的柔輪齒側(cè)面應(yīng)滿足如下接觸強度條件:
接觸強度計算公式:
—輸出轉(zhuǎn)矩
—柔輪節(jié)圓半徑
—柔輪輪齒寬
—剛輪壓力角
—接觸系數(shù)(0.4~0.9)
對于一般雙波傳動,輪齒寬許用接觸應(yīng)力
則:
所以滿足齒面的接觸強度要求。
2.7.2柔輪疲勞強度的計算
諧波齒輪傳動中輪齒的工作特點是:齒面的摩擦滑移接觸和柔輪承受著反復(fù)的交變載荷。為了使柔輪在循環(huán)的彈性變形下能正常工作,除滿足耐磨條件外,還必須進(jìn)行柔輪的疲勞強度計算。
柔輪材料采用 調(diào)制硬度229~269。
計算柔輪在反復(fù)彈性變形狀態(tài)下工作時所產(chǎn)生的交變應(yīng)力幅和平均應(yīng)力為
截面處正應(yīng)力:
切應(yīng)力:
由扭矩產(chǎn)生的剪切應(yīng)力:
其中:
則:
驗算安全系數(shù):
疲勞極限應(yīng)力:
應(yīng)力安全系數(shù):
其中,抗拉屈服極限:
剪切應(yīng)力集中系數(shù):
則滿足疲勞強度條件。
軸結(jié)構(gòu)尺寸設(shè)計
考慮到軸的載荷較大,材料選用45,熱處理調(diào)質(zhì)處理,取材料系數(shù)
所以,有該軸的最小軸徑為:
考慮到鍵槽的影響,所以dmin取值為17MM,具體結(jié)構(gòu)如下:
軸的受力分析及計算
軸的受力模型簡化(見圖7)及受力計算
圖 軸的受力分析知:
軸承的壽命校核
鑒于調(diào)整間隙的方便,軸承均采用正裝.預(yù)設(shè)軸承壽命為3年即12480h.
校核步驟及計算結(jié)果見下表:
表1 軸承壽命校核步驟及計算結(jié)果
計算步驟及內(nèi)容
計算結(jié)果
6014
A端
B端
由手冊查出Cr、C0r及e、Y值
Cr=98.5kN
C0r=86.0kN
e=0.68
計算比值Fa/Fr
FaA /FrA
e
確定X、Y值
XA=1 YA =0
查載荷系數(shù)fP
1.2
計算當(dāng)量載荷
P=Fp(XFr+YFa)
PA=5796.24 PB=6759.14
計算軸承壽命
763399h
大于
12480h
由計算結(jié)果可見軸承6014AC、6007均合格,最終選用軸承6014。
四、軸的強度校核
經(jīng)分析知C、D兩處為可能的危險截面,
現(xiàn)來校核這兩處的強度:
(1)、合成彎矩
(2)、扭矩T圖
(3)、當(dāng)量彎矩
(4)、校核
由手冊查材料45的強度參數(shù)
C截面當(dāng)量彎曲應(yīng)力:
由計算結(jié)果可見C截面安全。
各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯(lián)結(jié)均為靜聯(lián)結(jié),因此只需進(jìn)行擠壓應(yīng)力的校核.
一、 電機鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯(lián)結(jié)處的材料分別為: 45鋼(鍵) 、40Cr(軸)
(1) 剛輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯(lián)結(jié)處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯(lián)結(jié)合格.
(2)輸出軸處鍵: 按照聯(lián)軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯(lián)結(jié)處的材料分別為: 45鋼 (聯(lián)軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應(yīng)力進(jìn)行校核,查手冊其
該鍵聯(lián)結(jié)合格.
3.2手爪夾持器結(jié)構(gòu)設(shè)計與校核
3.2.1手爪夾持器種類
1.連桿杠桿式手爪
這種手爪在活塞的推力下,連桿和杠桿使手爪產(chǎn)生夾緊(放松)運動,由于杠桿的力放大作用,這種手爪有可能產(chǎn)生較大的夾緊力。通常與彈簧聯(lián)合使用。
2.楔塊杠桿式手爪
利用楔塊與杠桿來實現(xiàn)手爪的松、開,來實現(xiàn)抓取工件。
3.齒輪齒條式手爪
這種手爪通過活塞推動齒條,齒條帶動齒輪旋轉(zhuǎn),產(chǎn)生手爪的夾緊與松開動作。
4.滑槽式手爪
當(dāng)活塞向前運動時,滑槽通過銷子推動手爪合并,產(chǎn)生夾緊動作和夾緊力,當(dāng)活塞向后運動時,手爪松開。這種手爪開合行程較大,適應(yīng)抓取大小不同的物體。
5.平行杠桿式手爪
不 需要導(dǎo)軌就可以保證手爪的兩手指保持平行運動采用平行四邊形機構(gòu),因此,比帶有導(dǎo)軌的平行移動手爪的摩擦力要小很多
結(jié)合具體的工作情況,采用連桿杠桿式手爪。驅(qū)動活塞 往復(fù)移動,通過活塞桿端部齒條,中間齒條及扇形齒條 使手指張開或閉合。手指的最小開度由加工 工件的直徑來調(diào)定。本設(shè)計按照所要捆綁的重物最大使用 的鋼絲繩直徑為50mm來設(shè)計。
a.有適當(dāng)?shù)膴A緊力
手部在工作時,應(yīng)具有適當(dāng)?shù)膴A緊力,以保證夾持穩(wěn)定可靠,變形小,且不損壞工件的已加工表面。對于剛性很差的工件夾緊力大小應(yīng)該設(shè)計得可以調(diào)節(jié),對于笨重的工件應(yīng)考慮采用自鎖安全裝置。
b.有足夠的開閉范圍
工作時,一個手指開閉位置以最大變化量稱為開閉范圍。夾持類手部的手指都有張開和閉合裝置??捎瞄_閉角和手指夾緊端長度表示。于回轉(zhuǎn)型手部手指開閉范圍,手指開閉范圍的要求與許多因素有關(guān)
c.力求結(jié)構(gòu)簡單,重量輕,體積小
作時運動狀態(tài)多變,其結(jié)構(gòu),重量和體積直接影響整個氣壓機械手的結(jié)構(gòu),抓重,定位精度,運動速度等性能。手部處于腕部的最前端,工因此,在設(shè)計手部時,必須力求結(jié)構(gòu)簡單,重量輕,體積小。
d.手指應(yīng)有一定的強度和剛度
因此送料,采用最常用的外卡式兩指鉗爪,夾緊方式用常閉式彈簧夾緊,夾緊氣壓機械手,根據(jù)工件的形狀,松開時,用單作用式氣壓缸。此種結(jié)構(gòu)較為簡單,制造方便。
氣壓缸右腔停止進(jìn)油時,氣壓缸右腔進(jìn)油時松開工件。
3.2.2夾持器設(shè)計計算
手爪要能抓起工件必須滿足:
(3-6)
式中,-----為所需夾持力;
-----安全系數(shù),通常取1.2~2;
-----為動載系數(shù),主要考慮慣性力的影響可按估算,為機械手在搬運工件過程的加速度,,為重力加速度;
-----方位系數(shù),查表選?。?
-----被抓持工件的重量 20;
帶入數(shù)據(jù),計算得: ;
理論驅(qū)動力的計算: (3-7)
式中,----為柱塞缸所需理論驅(qū)動力;
----為夾緊力至回轉(zhuǎn)支點的垂直距離;
-----為扇形齒輪分度圓半徑;
-----為手指夾緊力;
---齒輪傳動機構(gòu)的效率,此處選為0.92;
其他同上。帶入數(shù)據(jù),計算得
計算驅(qū)動力計算公式為:
(3-8)
式中,-----為計算驅(qū)動力;
---安全系數(shù),此處選1.2;
---工作條件系數(shù),此處選1.1;
而氣壓缸的工作驅(qū)動力是由缸內(nèi)油壓提供的,故有
(3-9)
式中,---為柱塞缸工作油壓;
----為柱塞截面積;選取缸內(nèi)徑為50mm
3.2.3夾持器校核
活塞桿直徑查《氣壓傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當(dāng)活塞桿受拉時,一般選取d/D=0.3-0.5,當(dāng)活塞桿受壓時,一般選取d/D=0.5-0.7。本設(shè)計選擇d/D=0.7,d=35 mm
==965N》370N
計算所得的力遠(yuǎn)遠(yuǎn)大于實際所需要的力,所以滿足要求。
初步確系統(tǒng)壓力
表3-1 按負(fù)載選擇工作壓力[1]
負(fù)載/ KN
<5
5~10
10~20
20~30
30~50
>50
工作壓力/MPa
< 0.8~1
1.5~2
2.5~3
3~4
4~5
≥5
表3-2 各種機械常用的系統(tǒng)工作壓力[1]
機械類型
機 床
農(nóng)業(yè)機械
小型工程機械
建筑機械
氣壓鑿巖機
氣壓機
大中型挖掘機
重型機械
起重運輸機械
磨床
組合
機床
龍門
刨床
拉床
工作壓力/MPa
0.8~2
3~5
2~8
8~10
10~18
20~32
由表2-1和表2-2可知,初選氣壓缸的設(shè)計壓力P1=1MPa
第4章 并聯(lián)機構(gòu)機并聯(lián)機構(gòu)空間分析
并聯(lián)機構(gòu)機的并聯(lián)機構(gòu)空間,實質(zhì)上就是測頭的工作空間。該空間是指在滿足機構(gòu)的運動約束和幾何約束的條件下,并聯(lián)機構(gòu)機測頭所能達(dá)到的空間點的所有點集。這些點集可構(gòu)成一個體積,該體積的邊界曲面就是測頭工作空間的邊界。
4.1并聯(lián)機構(gòu)并聯(lián)機構(gòu)機的運動學(xué)約束
基本上,并聯(lián)的物理約束有三個,他們是:連桿桿長約束,運動副轉(zhuǎn)角約束和連桿桿間干涉。不同于通過限制轉(zhuǎn)動副來限制有效自由度,本節(jié)討論的運動學(xué)約束主要是限制運動范圍。
4.1.1 連桿桿長約束
連桿在運動過程中,其桿長必須滿足條件:
(i=1,2,3)
在上式中l(wèi)min和lmax分別表示連桿的最小桿長和最大桿長。
4.1.2 運動副轉(zhuǎn)角約束
同樣,在并聯(lián)工作過程中,必須滿足條件:
0αiαmax (i=1,2,3)
在上式中αmax代表球面副的最大圓錐擺角,αi為基座平面的法向量m與第i條連桿桿長向量li之間的夾角(圖4-1)??梢员硎境桑?
=cos
圖4-1 運動副轉(zhuǎn)角約束
上式中, l==(b-p) (i=1,2,3),
m==(p-p)(p-p).
4.1.3 連桿桿間干涉
由于3個并聯(lián)連桿與基座之間的連接關(guān)節(jié)為轉(zhuǎn)動副,三個連桿只能在各自的約束平面內(nèi)運動,因而不會產(chǎn)生干涉現(xiàn)象。
4.2 確定并聯(lián)機構(gòu)空間的基本方法
為了描述并聯(lián)機構(gòu)機測頭的工作空間,可取若干個適當(dāng)?shù)钠叫衅矫孀鳛楣ぷ骺臻g的剖面。這些平面與工作空間的交即是工作空間在這些剖面上的邊界曲線。若取一系列這樣的剖面,就可得到一系列的邊界曲線。這些邊界曲線的集合就可構(gòu)成一個完整的工作空間邊界
例如,取一平行于XOBY的平面X1ZjY1作為工作空間的剖面(如圖4-2所示),該平面距坐標(biāo)原點OB的距離Zj(Zmin Zmax)。然后,在該平面上取一極角φi,作一極線ρ那么極線ρ與邊界曲線的交點ρi即為測頭在該極線上所能達(dá)到的最遠(yuǎn)點。因此,只要能在此極線上找到ρi,即可算出該邊界點在坐標(biāo)系OB-XYZ中的空間坐標(biāo),即(ρicosφi,ρi sinφi,Z)。
圖4-2 量空間剖面選取及邊界曲線的確定
由此可以看出,通過上述方法處理后,即可將工作空間邊界點的計算問題轉(zhuǎn)化為對ρi的一維搜索問題。當(dāng)求得一個邊界點后,令極線的極角增加Δφ,再按上述方法搜索出另一個邊界點。當(dāng)極角φi由0°開始增加到360°時,就可得到該剖面上完整的邊界曲線。作完一個剖面后,增加Zj,再重復(fù)同樣方法,直到Zj由Zmin變化到Zmax為止,這樣就可求出并聯(lián)機構(gòu)機測頭的整個工作空間邊界。
4.3 PLC控制部分設(shè)計
考慮到氣缸的通用性,同時使用點位控制,因此我們采用可編程序控制器(PLC)對氣缸進(jìn)行控制.當(dāng)氣缸的動作流程改變時,只需改變PLC程序即可實現(xiàn),非常方便快捷。
4.3.1 可編程序控制器的選擇及工作過程
1. 可編程序控制器的選擇
目前,國際上生產(chǎn)可編程序控制器的廠家很多,如日本三菱公司的F系列PC,德國西門子公司的SIMATIC N5系列PC、日本OMRON(立石)公司的C型、P型PC等。考慮到本氣缸的輸入輸出點不多,工作流程較簡單,同時考慮到制造成本,因此在本次設(shè)計中選擇了OMRON公司的C28P型可編程序控制器。
2 可編程序控制器的工作過程
可編程序控制器是通過執(zhí)行用戶程序來完成各種不同控制任務(wù)的。為此采用了循環(huán)掃描的工作方式。具體的工作過程可分為四個階段。
第一階段是初始化處理。
可編程序控制器的輸入端子不是直接與主機相連,CPU對輸入輸出狀態(tài)的詢問是針對輸入輸出狀態(tài)暫存器而言的。輸入輸出狀態(tài)暫存器也稱為I/0狀態(tài)表.該表是一個專門存放輸入輸出狀態(tài)信息的存儲區(qū)。其中存放輸入狀態(tài)信息的存儲器叫輸入狀態(tài)暫存器;存放輸出狀態(tài)信息的存儲器叫輸出狀態(tài)暫存器。開機時,CPU首先使I/0狀態(tài)表清零,然后進(jìn)行自診斷。當(dāng)確認(rèn)其硬件工作正常后,進(jìn)入下一階段。
第二階段是處理輸入信號階段。
在處理輸入信號階段,CPU對輸入狀態(tài)進(jìn)行掃描,將獲得的各個輸入端子的狀態(tài)信息送到I/0狀態(tài)表中存放。在同一掃描周期內(nèi),各個輸入點的狀態(tài)在I/0狀態(tài)表中一直保持不變,不會受到各個輸入端子信號變化的影響,因此不能造成運算結(jié)果混亂,保證了本周期內(nèi)用戶程序的正確執(zhí)行。
第三階段是程序處理階段。
當(dāng)輸入狀態(tài)信息全部進(jìn)入I/0狀態(tài)表后,CPU工作進(jìn)入到第三個階段。在這個階段中,可編程序控制器對用戶程序進(jìn)行依次掃描,并根據(jù)各I/0狀態(tài)和有關(guān)指令進(jìn)行運算和處理,最后將結(jié)果寫入I/0狀態(tài)表的輸出狀態(tài)暫存器中。
第四階段是輸出處理階段。
CPU對用戶程序已掃描處理完畢,并將運算結(jié)果寫入到I/0狀態(tài)表狀態(tài)暫存器中。此時將輸入信號從輸出狀態(tài)暫存器中取出,送到輸出鎖存電路,驅(qū)動輸出繼電器線圈,控制被控設(shè)備進(jìn)行各種相應(yīng)的動作。然后,CPU又返回執(zhí)行下一個循環(huán)的掃描周期。
4.3.2 可編程序控制器的使用步驟
在可編程序控制器與被控對象(機器、設(shè)備或生產(chǎn)過程)構(gòu)成一個自動控制系統(tǒng)時,通常以七個步驟進(jìn)行:
(1)系統(tǒng)設(shè)計
即確定被控對象的工作原理,控制要求,動作及動作順序。
(2)I/0分配
即確定哪些信號是送到可編程序控制器的,并分配給相應(yīng)的輸入端號;哪些信號是由可編程序控制器送到被控對象的,并分配相應(yīng)的輸出端號.此外,對用到的可編程序控制器內(nèi)部的計數(shù)器、定時器等也要進(jìn)行分配??删幊绦蚩刂破魇峭ㄟ^編號來識別信號的。
(3)畫梯形圖
它與繼電器控制邏輯的梯形圖概念相同,表達(dá)了系統(tǒng)中全部動作的相互關(guān)系。如果使用圖形編程器(LCD或CRT),則畫出梯形圖相當(dāng)于編制出了程序,可將梯形圖直接送入可編程序控制器。對簡易編程器,則往往要經(jīng)過下一步的助記符程序轉(zhuǎn)換過程。
(4)助記符機器程序
相當(dāng)于微機的助記符程序,是面向機器的(即不同廠家的可編程序控制器,助記符指令形式不同),用簡易編程器時,應(yīng)將梯形圖轉(zhuǎn)化成助記符程序,才能將其輸入到可編程序控制器中。
(5)編制程序
即檢查程序中每條語法錯誤,若有則修改。這項工作在編程器上進(jìn)行。
(6)調(diào)試程序
即檢查程序是否能正確完成邏輯要求,不合要求,可以在編程器上修改。程序設(shè)計(包括畫梯形圖、助記符程序、編輯、甚至調(diào)試)也可在別的工具上進(jìn)行。如IBM-PC機,只要這個機器配有相應(yīng)的軟件。
(7)保存程序
調(diào)試通過的程序,可以固化在EPROM中或保存在磁盤上備用。
4.3.3可編程序控制器控制方案
為了滿足生產(chǎn)需要,氣缸應(yīng)設(shè)置手動工作方式、單動工作方式和自動工作方式。
(1)手動工作方式
便于對設(shè)備進(jìn)行調(diào)整和檢修,設(shè)置手動工作方式。用按鈕對氣缸每一動作單獨進(jìn)行控制。
(2)單動工作方式
從原點開始,按照自動工作循環(huán)的步序,每按下一次起動按鈕,氣缸完成一步的工作后,自動停止。
(3)自動工作方式
按下起動按鈕,氣缸從原點開始,按工序自動反復(fù)連續(xù)工作,直到按下停止按鈕,氣缸在完成最后一個周期的動作后,返回原點自動停機。
4.3.4 PLC控制原理圖設(shè)計
以上各動作均采用電機和氣動方式驅(qū)動,即用1個二位五通電磁閥控制1個氣缸,使氣氣缸抓放動作。其中旋轉(zhuǎn)運動用一組齒輪齒條,使氣缸的直線運動轉(zhuǎn)化為旋轉(zhuǎn)運動。這樣,可用PLC的8個輸出端與電磁閥的8個線圈相連,通過編程,使電磁閥各線圈按一定序列激勵,從而使氣缸按預(yù)先安排的動作序列工作.如果欲改變氣缸的動作,不需改變接線,只需將程序中動作代碼及順序稍加修改即可。另外,除抓放外,其余六個動作末端均放置一限位開關(guān),以檢測動作是否到位,如果某動作沒有到位,則出錯指示燈亮。
4.3.5 PLC梯形圖概述
PLC時專門為工業(yè)控制而開發(fā)的裝置,其主要使用者是工廠廣大電器技術(shù)人員,為了適應(yīng)他們的傳統(tǒng)習(xí)慣和裝我能力,通常PLC不采用微機的編程語言,而常常采用面向控制過程,連線問題的自然語言編程。國際電動委員會詳細(xì)地說明了語法,語義和下述5種編程語言:功能圖,梯形圖,功能快圖,指令表,結(jié)構(gòu)文本。梯形圖和功能塊圖為圖形語言,指令表和結(jié)構(gòu)文本為文字語言,功能表圖是一種結(jié)構(gòu)塊控制流程圖。
梯形圖程序設(shè)計語言是用梯形圖的圖形符合來描述程序的一種程序設(shè)計語言。采用梯形圖程序設(shè)計語言,這種程序設(shè)計語言采用因果關(guān)系來描述時間繁盛的條件和結(jié)果,每個梯級是一個因果關(guān)系。在梯級種,描述事件發(fā)生的條件表示在左面,事件發(fā)生的結(jié)果表示在右面。
梯形圖程序設(shè)計語言是最常用的一種程序設(shè)計語言,它來源于繼電器邏輯控制系統(tǒng)的描述。在工業(yè)過程控制領(lǐng)域,電氣技術(shù)人員對繼電器邏輯控制技術(shù)較為熟悉。因此,由這種邏輯控制技術(shù)發(fā)展而來的梯形圖受到歡迎,并得到廣泛的應(yīng)用。
梯形圖程序設(shè)計語言的特點是:與電氣操作原理圖相對應(yīng),具有直觀性和對應(yīng)性;與原有繼電器邏輯控制技術(shù)相一致,易于掌握和學(xué)習(xí);
與原有的繼電器邏輯控制技術(shù)的不同是:梯形圖中的電流不是實際意義的電流,內(nèi)部的繼電器也不是實際存在的繼電器,因此應(yīng)用時需與原有繼電器邏輯控制技術(shù)的有關(guān)概念區(qū)別對待。
梯形圖是使用得最多的梯形編程語言,被稱為PLC的第一編程語言。梯形圖與電器控制系統(tǒng)的電路圖很相似,具有直觀易懂的有點,很容易被工廠電氣人員掌握,特別適用于開關(guān)量邏輯控制。梯形圖常被稱為編程.
總 結(jié)
本文著重介紹了虛擬環(huán)境下并聯(lián)并聯(lián)機構(gòu)機的運動建模和仿真。首先說明一下本文研究內(nèi)容所涉及到的學(xué)術(shù)背景,并闡述了“虛擬樣機”等名詞的內(nèi)涵;接下來詳細(xì)討論了并聯(lián)并聯(lián)機構(gòu)機虛擬樣機的幾何模型.
參考文獻(xiàn)
[1] John A. Bosch. Coordinate Measuring Machines and Systems. New York: Marcel Dekker Inc. 1995,1-38
[2] 張國雄.三并聯(lián)機構(gòu)機[M].天津:天津大學(xué)出版社,1999.
[3] 張國雄.三并聯(lián)機構(gòu)機的發(fā)展趨勢[J].中國機械工程,2000,11(1-2): 222-226.
[4] 葉東,黃慶成,車仁生.多關(guān)節(jié)并聯(lián)機構(gòu)機的誤差模型[J].光學(xué)精密工程,1999,
[8] 中村哲夫.三并聯(lián)機構(gòu)機并聯(lián)機構(gòu)誤差的評價方法[J].國外計量. 1994,2: 8-13.
[9] 林璨.三并聯(lián)機構(gòu)機的精度檢定與位置誤差補償[J].現(xiàn)代計量測試. 1995,2: 21-24. [10] Oiwa Takaaki. Journal of the Japan Society for Precision Engineering, 1998,64(12):1791
[11] Oiwa Takaaki, et al. Journal of the Japan Society for Precision Engineering, 1999,65(2):288
[12] K. Takamasu and M. Hiraki. Journal of the Japan Society for Precision Engineering, 1997,63(12):1676
[13] 劉得軍,車仁生,羅小川.并聯(lián)機構(gòu)機新發(fā)展——并聯(lián)運動機構(gòu)并聯(lián)機構(gòu)機[J].光學(xué)精密工程,2000,8(5):497-498.
[14] Huang T,et al. Closed form solution of hexapod-based virtual axis machine tools[J]. ASME J. of Mechanical Design,1999,121: 26-31.
[15] 汪勁松,黃田.并聯(lián)機構(gòu)——機構(gòu)行業(yè)面臨的機遇與挑戰(zhàn)[J].中國機械工程, 1999,10(10): 1103-1107.
[16] 劉得軍,車仁生,楊玉國,等.并聯(lián)并聯(lián)機構(gòu)機及其虛擬原型研究[J].中國機械工程,2000,11(3): 252.
[17] 黃真,孔令富,方躍法.并聯(lián)機器人機構(gòu)學(xué)理論及控制.北京:機械工業(yè)出版社,1997:18~21.
致 謝
本論文是在我的導(dǎo)師老師的親切關(guān)懷和悉心指導(dǎo)下完成的,嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神和精益求精的工作態(tài)度深深的感染和激勵著我。從課題的選擇到論文的最終完成,老師都始終給予我細(xì)心的指導(dǎo)和不懈的支持。值此論文完成之際,我要向老師表示衷心的感謝。
同時,也向所有關(guān)心和幫助過我的老師、同學(xué)和朋友表示衷心