5、f(x)x22ax1a在x0,1上有最大值2,求a的值. 解函數(shù)f(x)x22ax1a (xa)2a2a1, 對稱軸方程為xa. (1)當a<0時,f(x)maxf(0)1a, 1a2,a1.,(2)當0a1時,f(x)maxf(a)a2a1, a2a12, a2a10,,(3)當a1時,f(x)maxf(1)a, a2. 綜上可知,a1或a2.,點評本題中函數(shù)的定義域是確定的,二次函數(shù)的對稱軸是不確定的,二次函數(shù)的最值問題與對稱軸息息相關,因此需要對對稱軸進行討論,分對稱軸在區(qū)間內(nèi)和對稱軸在區(qū)間外,從而確定函數(shù)在給定區(qū)間上的單調(diào)性,即可表示函數(shù)的最大值,從而求出a的值.,變式訓練2(2015
6、江蘇)已知函數(shù)f(x)x3ax2b(a,bR). (1)試討論f(x)的單調(diào)性; 解f(x)3x22ax,,當a0時,因為f(x)3x20, 所以函數(shù)f(x)在(,)上單調(diào)遞增;,(2)若bca(實數(shù)c是與a無關的常數(shù)),當函數(shù)f(x)有三個不同的零點時,a的取值范圍恰好是(,3) 求c的值. 解由(1)知,函數(shù)f(x)的兩個極值為f(0)b,,因為函數(shù)f(x)有三個零點時,,此時,f(x)x3ax21a(x1)x2(a1)x1a,,因函數(shù)有三個零點, 則x2(a1)x1a0有兩個異于1的不等實根, 所以(a1)24(1a)a22a30, 且(1)2(a1)1a0,,綜上c1.,題型三
7、根據(jù)圖形位置或形狀分類討論,A.6,15 B.7,15 C.6,8 D.7,8,取點A(2,0),B(4s,2s4),C(0,s),C(0,4). (1)當3s<4時,可行域是四邊形OABC,如圖(1)所示,此時,7z<8.,(2)當4s5時,此時可行域是OAC,如圖(2)所示,zmax8.綜上,z3x2y最大值的變化范圍是7,8.,答案D,點評幾類常見的由圖形的位置或形狀變化引起的分類 討論 (1)二次函數(shù)對稱軸的變化;(2)函數(shù)問題中區(qū)間的變化;(3)函數(shù)圖象形狀的變化;(4)直線由斜率引起的位置變化;(5)圓錐曲線由焦點引起的位置變化或由離心率引起的形狀變化;(6)立體幾何中點、線、面的
8、位置變化等.,解若PF2F190,,若F1PF290,,高考題型精練,1.對于R上可導的任意函數(shù)f(x),若滿足(x1)f(x)0,則必有() A.f(0)f(2)2f(1) 解析依題意,若任意函數(shù)f(x)為常函數(shù)時, 則(x1)f(x)0在R上恒成立;,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,若任意函數(shù)f(x)不是常函數(shù)時, 當x1時,f(x)0,函數(shù)f(x)在(1,)上是增函數(shù); 當xf(1),f(2)f(1), 綜上,則有f(0)f(2)2f(1). 答案C,高考題型精練,1,2,3,4,5,6,7,8,9,10,2.已知數(shù)列an
9、的前n項和Snpn1(p是常數(shù)),則數(shù)列an是() A.等差數(shù)列 B.等比數(shù)列 C.等差數(shù)列或等比數(shù)列 D.以上都不對,高考題型精練,解析Snpn1, a1p1,anSnSn1(p1)pn1(n2), 當p1且p0時,an是等比數(shù)列; 當p1時,an是等差數(shù)列; 當p0時,a11,an0(n2),此時an既不是等差數(shù)列也不是等比數(shù)列. 答案D,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,只有直線ykx1與直線x0垂直(如圖)或直線
10、ykx1與直線y2x垂直(如圖)時,平面區(qū)域才是直角三角形.,高考題型精練,1,2,3,4,5,6,7,8,9,10,由圖形可知斜率k的值為0或 1 2 . 答案D,高考題型精練,4.(2014四川)設mR,過定點A的動直線xmy0和過定點B的動直線mxym30交于點P(x,y),則|PA||PB|的取值范圍是(),1,2,3,4,5,6,7,8,9,10,高考題型精練,解析由動直線xmy0知定點A的坐標為(0,0), 由動直線mxym30知定點B的坐標為(1,3), 且兩直線互相垂直, 故點P在以AB為直徑的圓上運動. 故當點P與點A或點B重合時,,1,2,3,4,5,6,7,8,9,10,
11、高考題型精練,1,2,3,4,5,6,7,8,9,10,當點P與點A或點B不重合時,在RtPAB中,有|PA|2|PB|2|AB|210. 因為|PA|2|PB|22|PA||PB|, 所以2(|PA|2|PB|2)(|PA||PB|)2, 當且僅當|PA||PB|時取等號,,高考題型精練,1,2,3,4,5,6,7,8,9,10,答案B,高考題型精練,5.拋物線y24px (p0)的焦點為F,P為其上的一點,O為坐標原點,若OPF為等腰三角形,則這樣的點P的個數(shù)為() A.2 B.3 C.4 D.6 解析當|PO||PF|時,點P在線段OF的中垂線上, 此時,點P的位置有兩個; 當|OP||
12、OF|時,點P的位置也有兩個; 對|FO||FP|的情形,點P不存在. 事實上,F(xiàn)(p,0),,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,又y24px,x22px0, 解得x0或x2p, 當x0時,不構(gòu)成三角形. 當x2p(p0)時,與點P在拋物線上矛盾. 符合要求的點P一共有4個. 答案C,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,7.已知函數(shù)f(x)ax33x1對于x1,1總有f(x)0成立,則a
13、________. 解析若x0,則不論a取何值,f(x)0顯然成立;,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,當x<0即x1,0)時,,高考題型精練,1,2,3,4,5,6,7,8,9,10,g(x)在區(qū)間1,0)上單調(diào)遞增, 因此g(x)ming(1)4,從而a4,綜上得a4. 答案4,高考題型精練,8.(2014浙江)若某程序框圖如圖所示,當輸入50時,則該程序運行后輸出的結(jié)果是________.,1,2,3,4,5,6,7,8,9,10,解析輸入n50,由于i1,S0, 所以S2011,i2,此時不滿足S50; 當i2時,S212
14、4,i3,此時不滿足S50;,高考題型精練,當i3時,S24311,i4,此時不滿足S50; 當i4時,S211426,i5,此時不滿足S50; 當i5時,S226557,i6,此時滿足S50, 因此輸出i6. 答案6,1,2,3,4,5,6,7,8,9,10,高考題型精練,9.已知拋物線y22px(p0)的焦點為F,A是拋物線上橫坐標為4,且位于x軸上方的點,A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M. (1)求拋物線的方程;,1,2,3,4,5,6,7,8,9,10,所以拋物線的方程為y24x.,高考題型精練,(2)以M為圓心,MB為半徑作圓M,當K(m,0
15、)是x軸上一動點時,討論直線AK與圓M的位置關系. 解由題意知,圓M的圓心為點(0,2),半徑為2. 當m4時,直線AK的方程為x4, 此時,直線AK與圓M相離; 當m4時,由(1)知A(4,4),,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,即4x(4m)y4m0, 圓心M(0,2)到直線AK的距離,令d2,解得m1.,高考題型精練,1,2,3,4,5,6,7,8,9,10,所以,當m1時,直線AK與圓M相離; 當m1時,直線AK與圓M相切; 當m<1時,直線AK與圓M相交.,高考題型精練,10.已知a是實數(shù),函數(shù)f(x) x (xa).
16、 (1)求函數(shù)f(x)的單調(diào)區(qū)間; 解函數(shù)的定義域為0,),,1,2,3,4,5,6,7,8,9,10,若a0,則f(x)0,f(x)有單調(diào)遞增區(qū)間0,).,高考題型精練,1,2,3,4,5,6,7,8,9,10,高考題型精練,(2)設g(a)為f(x)在區(qū)間0,2上的最小值. 寫出g(a)的表達式; 求a的取值范圍,使得6g(a)2. 解由(1)知,若a0,f(x)在0,2上單調(diào)遞增, 所以g(a)f(0)0.,1,2,3,4,5,6,7,8,9,10,高考題型精練,1,2,3,4,5,6,7,8,9,10,若a6,f(x)在0,2上單調(diào)遞減,,高考題型精練,1,2,3,4,5,6,7,8,9,10,令6g(a)2.若a0,無解. 若0