(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件

上傳人:細(xì)水****9 文檔編號(hào):158807492 上傳時(shí)間:2022-10-06 格式:PPT 頁數(shù):46 大?。?.78MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件_第1頁
第1頁 / 共46頁
(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件_第2頁
第2頁 / 共46頁
(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件_第3頁
第3頁 / 共46頁

下載文檔到電腦,查找使用更方便

7 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2講 平面向量基本定理及坐標(biāo)表示課件(46頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、走向高考走向高考 數(shù)學(xué)數(shù)學(xué)路漫漫其修遠(yuǎn)兮路漫漫其修遠(yuǎn)兮 吾將上下而求索吾將上下而求索新課標(biāo)版新課標(biāo)版 高考總復(fù)習(xí)高考總復(fù)習(xí)平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第四章第四章第二講第二講 平面向量基本定理及坐標(biāo)表示平面向量基本定理及坐標(biāo)表示 第四章第四章知識(shí)梳理知識(shí)梳理雙基自測雙基自測1考點(diǎn)突破考點(diǎn)突破互動(dòng)探究互動(dòng)探究2糾錯(cuò)筆記糾錯(cuò)筆記狀元秘籍狀元秘籍3課課 時(shí)時(shí) 作作 業(yè)業(yè)4知識(shí)梳理知識(shí)梳理雙基自測雙基自測1平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)_向量,那么對于這一平面內(nèi)的任意向量a,_一對實(shí)數(shù)1,2,使a_.其中,不共線的向量e1,e2叫做表示這一平面內(nèi)所

2、有向量的一組_把一個(gè)向量分解為兩個(gè)_的向量,叫做把向量正交分解知識(shí)梳理 不共線有且只有1e12e2基底互相垂直(x2x1,y2y1)(x1x2,y1y2)(x1x2,y1y2)(x1,y1)x1y2x2y10非零ab雙基自測 考點(diǎn)突破考點(diǎn)突破互動(dòng)探究互動(dòng)探究平面向量的基本定理及其應(yīng)用 答案6規(guī)律總結(jié)應(yīng)用平面向量基本定理的關(guān)鍵點(diǎn)(1)平面向量基本定理中的基底必須是兩個(gè)不共線的向量(2)選定基底后,通過向量的加、減、數(shù)乘以及向量平行的充要條件,把相關(guān)向量用這一組基底表示出來(3)強(qiáng)調(diào)幾何性質(zhì)在向量運(yùn)算中的作用,用基底表示未知向量,常借助圖形的幾何性質(zhì),如平行、相似等提醒:在基底未給出的情況下,合理

3、地選取基底會(huì)給解題帶來方便點(diǎn)撥解法一體現(xiàn)了方程的思想,解題時(shí),“反其道而行之”,將待求的向量作為一組基底,然后利用這組基底把已知的向量表示出來,從而構(gòu)造出了待求向量的方程組;解法二的基本思想就是將分散的向量集中到一個(gè)三角形中,為利用三角形法則創(chuàng)造條件.平面向量的坐標(biāo)運(yùn)算 分析利用向量的坐標(biāo)運(yùn)算以及向量的坐標(biāo)與起點(diǎn)、終點(diǎn)坐標(biāo)的關(guān)系來求解規(guī)律總結(jié)平面向量坐標(biāo)運(yùn)算的技巧(1)向量的坐標(biāo)運(yùn)算主要是利用向量加、減、數(shù)乘運(yùn)算的法則來進(jìn)行求解,若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求向量的坐標(biāo)(2)解題過程中,常利用向量相等則其坐標(biāo)相同這一原則,通過列方程(組)來進(jìn)行求解答案(1)D(2)B分析根據(jù)平面向量線性

4、運(yùn)算法則及坐標(biāo)運(yùn)算進(jìn)行求解平面向量共線的坐標(biāo)表示及運(yùn)算 分析(1)直接利用向量的坐標(biāo)運(yùn)算得到關(guān)于m,n的方程組;(2)根據(jù)向量平行的坐標(biāo)表示,得到關(guān)于k的方程;(3)根據(jù)給出的兩個(gè)條件,利用坐標(biāo)運(yùn)算可得到關(guān)于向量d的坐標(biāo)的方程組解以上方程(組)即可規(guī)律總結(jié)(1)根據(jù)向量共線的坐標(biāo)運(yùn)算求參數(shù)的值的一般思路:利用向量共線轉(zhuǎn)化為含參數(shù)的方程,解方程可求參數(shù)(2)利用向量共線的坐標(biāo)運(yùn)算解三角形的一般思路:利用向量共線的坐標(biāo)運(yùn)算轉(zhuǎn)化為三角方程,再利用三角恒等變換求解糾錯(cuò)筆記糾錯(cuò)筆記狀元秘籍狀元秘籍易錯(cuò)點(diǎn)忽視平面向量基本定理的使用條件致誤狀元秘籍平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)1,2,使a1e12e2.特別地,當(dāng)a0時(shí),120.用平面向量基本定理解決問題的一般思路是:先選擇一組基底,并運(yùn)用平面向量的基本定理將條件和結(jié)論表示成基底的線性組合,再通過向量的線性運(yùn)算來解決問題在基底未給出的情況下,合理地選取基底會(huì)給解題帶來方便

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!