《三維坐標(biāo)變換》PPT課件.ppt

上傳人:xt****7 文檔編號:15738668 上傳時間:2020-09-02 格式:PPT 頁數(shù):27 大?。?67.50KB
收藏 版權(quán)申訴 舉報 下載
《三維坐標(biāo)變換》PPT課件.ppt_第1頁
第1頁 / 共27頁
《三維坐標(biāo)變換》PPT課件.ppt_第2頁
第2頁 / 共27頁
《三維坐標(biāo)變換》PPT課件.ppt_第3頁
第3頁 / 共27頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《三維坐標(biāo)變換》PPT課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《《三維坐標(biāo)變換》PPT課件.ppt(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第7章 三維變換,7.1 簡介 7.2 三維幾何變換 7.3 三維坐標(biāo)變換,7.1 簡介,三維平移變換、比例變換可看成是二維情況的直接推廣。但旋轉(zhuǎn)變換則不然,因為我們可選取空間任意方向作旋轉(zhuǎn)軸,因此三維變換處理起來更為復(fù)雜。,與二維變換相似,我們也采用齊次坐標(biāo)技術(shù)來描述空間的各點坐標(biāo)及其變換,這時,描述空間三維變換的變換矩陣是44的形式。 由此,一系列變換可以用單個矩陣來表示。,7.2 三維幾何變換,7.2.1 基本三維幾何變換 1. 平移變換 若空間平移量為(tx, ty, tz),則平移變換為,P(x,y,z),P(x,y,z),x,y,z,補充說明:點的平移、物體的平移、多面體的平移、逆

2、變換,2. 比例變換,(1) 相對坐標(biāo)原點的比例變換 一個點P=(x,y,z)相對于坐標(biāo)原點的比例變換的矩陣可表示為,x,y,z,其中,為正值。,(2) 相對于所選定的固定點的比例變換,z,x,y,(xf,yf,zf),z,x,y,(xf,yf,zf),z,x,y,(xf,yf,zf),z,x,y,(xf,yf,zf),(1),(2),(3),3. 繞坐標(biāo)軸的旋轉(zhuǎn)變換,三維空間中的旋轉(zhuǎn)變換比二維空間中的旋轉(zhuǎn)變換復(fù)雜。除了需要指定旋轉(zhuǎn)角外,還需指定旋轉(zhuǎn)軸。 若以坐標(biāo)系的三個坐標(biāo)軸x,y,z分別作為旋轉(zhuǎn)軸,則點實際上只在垂直坐標(biāo)軸的平面上作二維旋轉(zhuǎn)。此時用二維旋轉(zhuǎn)公式就可以直接推出三維旋轉(zhuǎn)變換矩陣

3、。 規(guī)定在右手坐標(biāo)系中,物體旋轉(zhuǎn)的正方向是右手螺旋方向,即從該軸正半軸向原點看是逆時針方向。,(1)繞 z 軸旋轉(zhuǎn),x,x,x,y,y,y,z,z,z,(2)繞 x 軸旋轉(zhuǎn),(3)繞 y 軸旋轉(zhuǎn),繞 z 軸旋轉(zhuǎn),繞 x 軸旋轉(zhuǎn),繞 y 軸旋轉(zhuǎn),旋轉(zhuǎn),則該軸坐標(biāo)的一列元素不變。按照二維圖形變換的情況,將其旋轉(zhuǎn)矩陣,中的元素添入相應(yīng)的位置中,即,對于單位矩陣,旋轉(zhuǎn)變換矩陣規(guī)律:,,繞哪個坐標(biāo)軸,(1) 繞z軸正向旋轉(zhuǎn),角,旋轉(zhuǎn)后點的z坐標(biāo)值不變, x、y,坐標(biāo)的變化相當(dāng)于在xoy平面內(nèi)作正,角旋轉(zhuǎn)。,(2)繞x軸正向旋轉(zhuǎn),角,旋轉(zhuǎn)后點的x坐標(biāo)值不變,,Y、z坐標(biāo)的變化相當(dāng)于在yoz平面內(nèi)作正,角旋

4、轉(zhuǎn)。,即,這就是說,繞y軸的旋轉(zhuǎn)變換的矩陣與繞x軸和z軸變換的矩陣從表面上看在符號上有所不同。,(3) 繞y軸正向旋轉(zhuǎn),角,y坐標(biāo)值不變,z、x的坐標(biāo)相當(dāng),于在zox平面內(nèi)作正,角旋轉(zhuǎn),于是,7.2.2 組合變換,物體繞平行于某一坐標(biāo)軸的旋轉(zhuǎn)變換?;静襟E: (1) 平移物體使旋轉(zhuǎn)軸與所平行的坐標(biāo)軸重合; (2) 沿著該坐標(biāo)軸進(jìn)行指定角度的旋轉(zhuǎn); (3) 平移物體使旋轉(zhuǎn)軸移回到原位置。,x,y,z,x,y,z,(a),(b),y,x,z,(c),x,z,(d),繞任意軸旋轉(zhuǎn)的變換 (1)平移物體使旋轉(zhuǎn)軸通過坐標(biāo)原點;,x,y,z,P1,P2,x,y,z,P1,P2,(1),(2)旋轉(zhuǎn)物體使旋轉(zhuǎn)

5、軸與某個坐標(biāo)軸(如z軸)重合; (3)關(guān)于該坐標(biāo)軸進(jìn)行指定角度的旋轉(zhuǎn);,x,y,z,P1,P2,(2),y,x,z,P1,P2,(3),(4) 應(yīng)用逆旋轉(zhuǎn)變換將旋轉(zhuǎn)軸回到原方向; (5) 應(yīng)用逆平移變換將旋轉(zhuǎn)軸變換到原位置。,x,y,z,P1,P2,(4),x,y,z,P1,P2,(5),例. 求變換AV,使過原點的向量V=(a,b,c)與z軸的正向一致。,x,y,z,V,x,y,z,實現(xiàn)步驟: (1)將V繞x軸旋轉(zhuǎn)到xz 平面上; (2)再繞y軸旋轉(zhuǎn)使之與z軸正向重合。,旋轉(zhuǎn)角度的確定:繞x軸旋轉(zhuǎn)的角度 等于向量V在yz 平面上的投影向量與z 軸正向的夾角。,x,y,z,V=(a,b,c),

6、V1=(0,b,c),V,V,根據(jù)矢量的點乘與叉乘,可以算出:,因此,,類似地,可以求出:,利用這一結(jié)果,則繞任意軸旋轉(zhuǎn)的變換矩陣可表示為:,x,y,z,P1,P2,x,y,z,P1,P2,1) T,x,y,z,P1,P2,2),x,z,P1,P2,3),給定具有單位長的旋轉(zhuǎn)軸A=ax,ay,az和旋轉(zhuǎn)角 ,,則物體繞OA軸旋轉(zhuǎn)變換的矩陣表示可確定如下:,A,軸角旋轉(zhuǎn),7.2.3 繞任意軸旋轉(zhuǎn)變換的簡單算法,x,y,z,o,其中,表示M的轉(zhuǎn)置矩陣。,利用這一結(jié)果,則繞任意軸旋轉(zhuǎn)的變換矩陣可表示為:,傳統(tǒng)的方法通過繞坐標(biāo)軸旋轉(zhuǎn)變換的乘積表示繞任意軸旋轉(zhuǎn)的變換。與之相比,這種方法更直觀。,x,y,

7、z,P1,P2,x,y,z,P1,P2,其中旋轉(zhuǎn)軸A=ax,ay,az為,A,7.2.4 三維變換矩陣的功能分塊,(1)三維線性變換部分 (2)三維平移變換部分 (3)透視變換部分 (4)整體比例因子,7.3 三維坐標(biāo)變換,幾何變換:在一個參考坐標(biāo)系下將物體從一個位置移動到另一個位置的變換。 坐標(biāo)變換: 一個物體在不同坐標(biāo)系之間的坐標(biāo)變換。如從世界坐標(biāo)系到觀察坐標(biāo)系的變換;觀察坐標(biāo)到設(shè)備坐標(biāo)之間的變換。再如,對物體造型時,我們通常在局部坐標(biāo)系中構(gòu)造物體,然后重新定位到用戶坐標(biāo)系。,坐標(biāo)變換的構(gòu)造方法: 與二維的情況相同,為將物體的坐標(biāo)描述從一個系統(tǒng)轉(zhuǎn)換為另一個系統(tǒng),我們需要構(gòu)造一個變換矩陣,它

8、能使兩個坐標(biāo)系統(tǒng)重疊。具體過程分為兩步: (1)平移坐標(biāo)系統(tǒng)oxyz,使它的坐標(biāo)原點與新坐標(biāo)系統(tǒng)的原點重合; (2)進(jìn)行一些旋轉(zhuǎn)變換,使兩坐標(biāo)系的坐標(biāo)軸重疊。 有多種計算坐標(biāo)變換的方法,下面我們介紹一種簡單的方法。,x,y,z,(0,0,0),x,z,y,設(shè)新坐標(biāo)系oxyz 原點的坐標(biāo)為(x0,y0,z0),相對原坐標(biāo)系其單位坐標(biāo)矢量為:,將原坐標(biāo)系xyz下的坐標(biāo)轉(zhuǎn)換成新坐標(biāo)系xyz的坐標(biāo)可由以下兩步完成: 首先, 平移坐標(biāo)系xyz,使其原點與新坐標(biāo)系xyz的原點(x0,y0,z0)重合;,x,y,z,(0,0,0),x,z,y,x,y,z,(0,0,0),平移矩陣為:,(x,y,z),第二步,利用單位坐標(biāo)向量構(gòu)造坐標(biāo)旋轉(zhuǎn)矩陣,該矩陣R將單位向量,分別變換到x,y和z 軸。,綜合以上兩步,從oxyz到oxyz的坐標(biāo)變換的矩陣為,說明:變換矩陣TR將一個直角坐標(biāo)系變換為另一個坐標(biāo)系。即使一個坐標(biāo)系是右手坐標(biāo)系,另一個為左手坐標(biāo)系,結(jié)論依然成立。,,也即坐標(biāo)變換公式為:,習(xí)題7 7-1 對于點P(x,y,z) ,(1) 寫出它繞x 軸旋轉(zhuǎn) 角,然后再繞y軸旋轉(zhuǎn) 角的變換矩陣。 (2)寫出它繞 y 軸旋轉(zhuǎn) 角,然后再繞 x 軸旋轉(zhuǎn) 角的變換矩陣。所得到的變換矩陣的結(jié)果一樣嗎? 7-2 寫出繞空間任意軸旋轉(zhuǎn)的變換矩陣。,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!